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Introduction by Lord Bayrrica, Sec.R.S.

Tue publication of this paper after nearly half a century demands a word of
explanation ; and the opportunity may be taken to point out in what respects the
received theory of gases had been anticipated by WATERsTON, and to offer some
suggestions as to the origin of certain errors and deficiencies in his views. -

So far as I am aware, the paper, though always accessible in the Archives of the
Royal Society, has remained absolutely unnoticed. Most unfortunately the abstract

printed at the time (‘Roy. Soc. Proc.,’ 1846, vol. 5, p. 604; here reprinted as

Appendix L), gave no adequate idea of the scope of the memoir, and still less of the
nature of the results arrived at. The deficiency was in some degree supplied by a
short account in the ‘ Report of the British Association’ for 1851 (here reprinted
as Appendix IL), where is distinctly stated the law, which was afterwards to become
so famous, of the equality of the kinetic energies of different molecules at the same
temperature.

My own attention was attracted in the first instance to WATERSTON’S work upon
the connection between molecular forces and the latent heat of evaporation, and
thence to a paper in the ¢Philosophical Magazine’ for 1858, “On the Theory of
Sound.” He there alludes to the theory of gases under consideration as having been
started by HERAPATH in 1821, and he proceeds :—

“ Mr. HeraraTH unfortunately assumed heat or temperature to be represented by
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2 MR. J. J. WATERSTON ON THE PHYSICS OF MEDIA COMPOSED OF

the simple ratio of the velocity instead of the square of the velocity-—being in this
apparently led astray by the definition of motion generally received—and thus was
baffled in his attempts to reconcile his theory with observation. If we make this
change in Mr. HeraparE’s definition of heat or temperature, viz., that it is propor-
tional to the vis viva, or square velocity of the moving particle, not to the momentum,
or simple ratio of the velocity, we can without much difficulty deduce, not only the
primary laws of elastic fluids, but also the other physical properties of gases enume-
rated above in the third objection to NEwron’s hypothesis. In the Archives of the
Royal Society for 1845-1846, there is a paper ““On the Physics of Media that
consists of perfectly Elastic Molecules in a State of Motion,” which contains the
synthetical reasoning upon which the demonstration of these matters rests. The
velocity of sound is therein deduced to be equal to the velocity acquired in falling
through three-fourths of a uniform atmosphere. This theory does not take account
of the size of the molecules. It assumes that no time is lost at the impact, and that
if the impacts produce rotatory motion, the wvis viva thus invested bears a constant
ratio to the rectilineal vis viva, so as not to require separate consideration. It also
does not take account of the probable internal motion of composite molecules; yet
the results so closely accord with observation in every part of the subject as to leave
no doubt that Mr. HeErapaTr’s idea of the physical constitution of gases approxi-
mates closely to the truth. M. Kronig appears to have entered upon the subject in
an independent manner, and arrives at the same result; M. CLausius, too, as we
learn from his paper “ On the Nature of the Motion we call Heat” (¢ Phil. Mag.,’
vol. 14, 1857, p. 108).”

Impressed with the above passage and with the general ingenuity and soundness
of WarerstoN's views, I took the first opportunity of consulting the Archives, and
saw at once that the memoir justified the large claims made for it, and that it marks
an immense advance in the direction of the now generally received theory. The
omission to publish it at the time was a misfortune, which probably retarded the
development of the subject by ten or fifteen years. It is singular that WareRsTON
appears to have advanced no claim for subsequent publication, whether in the Trans-
actions of the Society, or through some other channel. At any time since 1860
reference would naturally have been made to Maxwerr, and it cannot be doubted
that he would have at once recommended that everything possible should be done to
atone for the original failure of appreciation.

It is difficult to put oneself in imagination into the position of the reader of 1845,
and one can understand that the substance of the memoir should have appeared
speculative and that its mathematical style should have failed to attract. But it is
startling to find a referee expressing the opinion that “the paper is nothing but
nonsense, unfit even for reading before the Society.” Another remarks ¢ that the
whole investigation is confessedly founded on a principle entirely hypothetical, from
which it is the object to deduce a mathematical representation of the phenomena
of elastic media. It exhibits much skill and many remarkable accordances with the
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general facts, as well as numerical values furnished by observation. . . . The
original principle itself involves an assumption which seems to me very difficult to
admit, and by no means a satisfactory basis for a mathematical theory, viz., that the
elasticity of a medium is to be measured by supposing its molecules in vertical motion,
and making a succession of impacts against an elastic gravitating plane.” These
remarks are not here quoted with the idea of reflecting upon the judgment of the
referee, who was one of the best qualified authorities of the day, and evidently
devoted to a most difficult task his careful attention ; but rather with the view of
throwing light upon the attitude then assumed by men of science in regard to this
question, and in order to point a moral. The history of this paper suggests that
highly speculative investigations, especially by an unknown author, are best brought
before the world through some other channel than a scientific society, which naturally
hesitates to admit into its printed records matter of uncertain value. Perhaps one
may go further and say that a young author who believes himself capable of great
things would usually do well to secure the favourable recognition of the scientific
world by work whose scope is limited, and whose value is easily judged, before
embarking upon higher flights.

One circumstance which may have told unfavourably upon the reception of
WaArTERSTON'S paper is that he mentions no predecessors. Had he put forward his
investigation as a development of the theory of D. BerNouULLI, 8 referee might have
hesitated to call it nonsense. It is probable, however, that WATERSTON was
unacquainted with BerwvourLnr's work, and doubtful whether at that time he knew
that HerarATH had to some extent foreshadowed similar views.

At the present time the interest of WATERSTON'S paper can, of course, be little
more than historical. What strikes one most is the marvellous courage with which
he attacked questions, some of which even now present serious difficulties. To say
that he was not always successful is only to deny his claim to rank among the very
foremost theorists of all ages. The character of the advance to be dated from this
paper will be at once understood when it is realised that WATERSTON was the first to
introduce into the theory the conception that heat and temperature are to be
measured by vis viva. This enabled him at a stroke to complete BERNOULLI'S expla-
nation of pressure by showing the accordance of the hypothetical medium with the
law of Darron and Gay-Lussac. In the second section the great feature is the
statement (VIL), that “in mixed media the mean square molecular velocity is
inversely proportional to the specific weight of the molecules.” The proof which
‘WaATERSTON gave is doubtless not satisfactory ; but the same may be said of that
advanced by MAaxwEgLL fifteen years later. The law of Avocapro follows at once,
as well as that of Gramam relative to diffusion. Since the law of equal energies wag
actually published in 1851, there can be no hesitation, I think, in attaching WaTr-
sToN’s name to it. The attainment of correct results in the third section, dealing
with adiabatic expansion, was only prevented by a slip of calculation,

B 2
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In a few important respects WATERSTON stopped short. There is no indication,
so far as I can see, that he recognised any other form of motion, or energy, than the
translatory motion, though this is sometimes spoken of as vibratory. In this matter
the priority in a wider view rests with Crausius. According to WarerstoN the
ratio of specific heats should be (as for mercury vapour) 1'67 in all cases. Again,
although he was well aware that the molecular velocity cannot be constant, there
is no anticipation of the law of distribution of velocities established by MAXWELLL.

A large part of the paper deals with chemistry, and shows that his views upon
that subject also were much in advance of those generally held at the time.

The following extract from a letter by Professor McLzop will put the reader into
possession of the main facts of the case :—

“ It seems a misfortune that the paper was not printed when it was written, for it
shadows forth many of the ideas of modern chemistry which have been adopted since
1845, and it might have been the means of hastening their reception by chemists.

“The author compares the masses of equal volumes of gaseous and volatile elements
and compounds, and taking the mass of a unit volume of hydrogen as unity, he
regards the masses of the same volume of other volatile bodies as representing their
molecular weight, and in the case of the elements he employs their symbols to indicate
the molecules.

“In water he considers that the molecule of hydrogen is combined with half a
molecule of oxygen, forming one of steam, and he therefore represents the com-
pound as HO,. He does not make use of the term ‘“atom ” (although he speaks of
atomic weight on p. 18, but thinks it divisible), and if he had called the smallest
proportion of an element which enters into combination an atom, he would probably
have been led to believe that the molecules of some of the simple bodies contain two
atoms, and he might have adopted two volumes to represent the molecule, as is done
at the present time. The author calls one volume or molecule of chlorine Cl, one
volume or molecule of hydrogen H, and one volume or molecule of hydrochloric acid
H,Cl. If he had regarded the molecules as containing two indivisible atoms, these
bodies would have been represented, as now, by the formule Cl, H,, and HCI
respectively, all occupying two volumes. § 15 shows how near he was to this
conception. GERHARDT in the Fourth Part of his ‘Traité de Chimie Organique,’
published in 1856, points out the uniformity introduced into chemical theory by the
adoption of this system.

“For carbon he makes C = 12, as now accepted, although I do not find how he
arrives at this number. He seems to have anticipated one of RAMSAY’S recent
discoveries, that nitrous anhydride (hyponitrous acid, ON,, No. 26 in the table)
dissociates on evaporation into nitric oxide (binoxide of nitrogen, No. 28) and nitric
peroxide (nitrous acid, No. 25).

“The values for the symbols for sulphur, phosphorus, and arsenic taken from the
vapour densities (and which are multiples of what are believed to be the true atomic
weights), cause some complexity in the formulae of their compounds,
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“ There seem to be errors in the formulse of alcohol and ether on p. 49, for they do
not agree with those in the table. They ought probably to be written

2 (HC%) + O%QH%. and 4—, (.['IC,&,) "l" O%ZH%.

“ Considering how nearly WATERSTON approached what is now believed to be the
true theory, it is disappointing to read his controversy with OprLing in 1863 and 1864
(‘ Phil. Mag.,” vols. 26 and 27), where he seems to oppose the new formulee then being
introduced. IHe is very dogmatic about the constitution of hydrate of potash: he
very properly insists that, we can only obtain a knowledge of the molecular weight of
bodies that can be volatilized, and of which the vapour densities can be determined,
but he does not see the analogy between the hydrate and oxide of potassium with
alcohol and ether, probably because he regards these latter bodies as combinations of
water with different quantities of olefiant gas. He writes water HO, = 9, alcohol
CH,HO, = 23, and ether C,H,.HO, =37, whilst he considers potassic hydrate
KO,. HO, = 56, and oxide of potassium KO, = 47, the hydrate having a higher
molecular weight than the oxide. If we regard these compounds as derived from
water by the replacement of hydrogen by ethyl and potassium respectively, the
analogy between the two series is complete (ethyl was discovered in 1849 and is
mentioned by WATERSTON).

H,O =18 H,0 =1s.
(C,H;) HO = 46 KHO = 56.
(CH;), O =174 K, 0 =94,

“ From a remark in the ¢ Phil. Mag.” (vol. 26, p. 520), I imagined that WATERsTON
had arrived at the double atomic weights of many of the metals now adopted, for he
gives that of iron as 56 and that of aluminium as 27 calculated from their specific
heats, but there is an error in his arithmetic, for 3:3 divided by the specific heat of
iron 1138 gives 28998, and 33 divided by the specific heat of aluminium 2143
gives 15°399.”

With the exception of some corrections relating merely to stops and spelling the
paper is here reproduced exactly as it stands in the author’s manuseript.—Dec. 1891.

[Author’s Introduction.]

Or the physical theories of heat that have claimed attention since the time of
Bacon, that which ascribes its cause to the intense vibrations of the elementary parts
of bodies has received a considerable accession of probability from the recent experi-
ments of ForBEs and MELLoNI. It is admitted that these have been the means of
demonstrating that the mode of its radiation is identical with that of light in the
quantities of refraction and polarization. The evidence that has been accumulated in
favour of the undulatory theory of light has thus been made to support with a great
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portion of its weight a like theory of the phenomena of heat; and we are, perhaps,
Jjustified in expecting that the complete development of this theory will have a much
more important influence on the progress of science, because of its more obvious
connection and intimate blending with almost every appearance of Nature. Heat is not
only the subject of direct sensation and the vivifier of organic life, but it is manifested
as the accompaniment of mechanical force. It is related to it both as cause and effect,
and submits itself readily to measurement by means of the mechanical changes that
are among the most prominent indications of its change of intensity. The undulatory
theory at once leads us to the conclusion that, inasmuch as the temperature of a body
is a persistent quality due to the motion of its molecules, its internal constitution
must admit of it retaining a vast amount of living force. Indeed, it seems to be
almost impossible now to escape from the inference that heat is essentially molecular
vis viva.  In solids, the molecular oscillations may be viewed as being restrained by
the intense forces of aggregation. In vapours and gases these scem to be overcome ;
vibrations can no longer be produced by the inherent wvis insita of the molecules
struggling with attractive and repellant forces ; the struggle is over and the molecules
are free; but they, nevertheless, continue to maintain a certain temperature; they
are capable of heating and being heated ; they are endowed with the quality heat,
which, being of itself motion, compels us to infer that a molecule in motion without
any force to restrain or qualify it, is in every respect to be considered as a free pro-
jectile. Allow such free projectiles to be endowed with perfect elasticity, and
likewise extend the same property to the elementary parts of all bodies that they
strike against, and we immediately introduce the principle of the conservation of
vis viva to regulate the general effects of their fortuitous encounters. Whether gases
do consist of such minute elastic projectiles or not, it seems worth while to enquire
into the physical attributes of media so constituted, and to see what analogy they
bear to the elegant and symmetrical laws of aeriform bodies,

Some years ago I made an attempt to do so, proceeding synthetically from this
fundamental hypothesis, and have lately obtained demonstration of one or two points
where the proof was then deficient. The results have appeared so encouraging,
although derived from very humble applications of mathematics, that I have been
led to hope a popular account of the train of reasoning may not prove unacceptable to
the Royal Society.—Sept. 1, 1845.

SrorioNn I.—Or A HomogENEOUS MEDIUM AND THE LAWS OF I1TS ELASTICITY.

§ 1. The term medium is, perhaps, not quite appropriate to what is here intended
to be signitied. We speak of a resisting medium, of the medium of light, and in each
expression something is referred to as intervening between bodies, and it is the
quality of interposition that entitles it to the name. Here, for want of better, it is
employed to denote a certain hypothetical condition of matter which it is the object
of this Paper to show has physical properties that resemble those that have been



FREE AND PERFECTLY ELASTIC MOLECULES IN A STATHE OF MOTION. 7

found to belong to aeriform bodies. Inasmuch, therefore, as the word may be applied
to a simple unmixed gas so as to speak of it as an oxygen medium or a hydrogen
medium, &c., so far we may be allowed the use of it in treating of a hypothetical
medium, which we have carefully to refrain from assimilating to any known form of
matter until, by synthetical reasoning, circumstantial evidence bas been accumulated
sufficient to prove or render probable its identity.

To have a proper conception of what the medium is that forms the subject of
speculation, we must imagine a vast multitude of small particles of matter, perfectly
alike in every respect, perfectly elastic as glass or ivory—but of size, form and
texture that requires not to be specified further than that they are not liable to
change by mutual action—to be enclosed by elastic walls or surfaces in a space so
much greater than their aggregate bulk as to allow them freely to move amongst
each other in every direction. As all consideration of attractive forces is left out at
present, it is obvious that each particle must proceed on a straight line until it strikes
against another, or against the sides of the enclosure ; that it must then be reflected
and driven into another line of motion, traversing backwards and forwards in every
direction, so that the intestine condition of the multitude of these that form the
medium may be likened to the familiar appearance of a swarm of gnats in a sunbeam.

The quality of perfect elasticity being common to all the particles, the original
amount of vis viva, or living, acting force, of the whole multitude must for ever remain
the same. If undisturbed by external action it cannot, of itself, diminish or increase,
but must for ever remain as unchanged as the matter that is associated with it and
that it endows with activity. Such is the case if we view the whole mass of moving
particles as one object, but each individual of the multitude must at every encounter
give or receive, according to the ever-changing angle and plane of impact, some portion
of its force, so that, considered separately, they are for ever continually changing
the velocity and direction of their individual motions ; striking against and rebounding
from each other, they run rapidly in their zig-zag conflict through every possible
mode of concurrence, and at each point of the medium we may thus conceive that
particles are moving in every possible direction and encountering each other in every
possible manner during so small an elapsed interval of time that it may be viewed as
unfinutesimal in respect to any sensible period. The medium must in this way become
endowed with a permanent state of elastic energy or disposition to expand, uniformly
sustained in every part and communicating to it the physical character of an elastic
fluid.

The simplicity of this hypothesis facilitates the application of mathematics in
ascertaining the nature and properties of such media, and the study acquires much
interest from the analogies that it unfolds. For if the reasoning is correct, the
physical laws common to all gases and vapours—those laws, namely, that concern
heat aud pressure—do actually belong to such media, and may be synthetically
deduced from the constitution which has now been assigned to them.

The characteristic which renders a medium susceptible of mathematical treatment is
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that of its being composed of particles perfectly alike in every respect, but it is chiefly
their identity in weight or mass that is the important point of distinction. A
particle thus conforms to the definition that the eminent physicist AMpirE has given
to the term molecule, which we may therefore adopt as a more significant name for
the element of a medium.

The first department of the subject must naturally be devoted to the consideration
of the circumstances that determine the equilibrium of such a homogeneous medium
considered by itself. Its density, by which ie to be understood not its specific gravity
but the number of molecules in a constant volume,* may be supposed to vary without
disturbing its homogeneity. The mean square velocity of the molecules (which in
any infinitesimal portion of the medium may be assumed as uniform) we also have to
consider as a variable quantity, and the physical qualities of a medium being
dependent on these two elements of its constitution, it is necessary to determine
clearly their mathematical relations.

§ 2. It is evident from the definition of the hypothesis, that the medium must
exert some expansive force on the surface that encloses it; but the nature of the
force is not strictly continuous, it is composed of a multitude of successive strokes.
Nevertheless, their succession is certainly continuous, and it is not difficult to
conceive how they may be sufficient to counterbalance and support a superincumbent
weight. To obtain an exact idea of this, let us suppose that a small elastic plane
whose weight is n times that of a molecule, is supported by a regular succession of
such molecules striking its centre of gravity with a velocity v. We seek to know the
condition of their mutual action when an equilibrium is maintained.

The following are the well-known equations that express the law of elastic collision.
They are necessarily the foundation of all reasoning on the effects of the mutual
action of elastic bodies by impact.

1. The Meeting Impact.

Two molecules, B and D, meet directly in an intermediate point and strike each
other with the respective velocities 8 and 8. The velocities after impact are re-
spectively :— 25+ 8)D 25+ 8)b

+
By=—8+ “B4D) ; and §,=0 — “BLD) ;

the direction of D’s motion being reckoned positive.

2. The Overtaking Impact.

The two molecules, B and D, with the same velocities, 8 and 8, move in the same
direction and D overtakes B; the velocities after impact are respectively :—
26—-p8D | _ 20—=8)B,
B, =B+ D) and 8, =26 G rD)
the direction of D’s motion being reckoned positive.
#* [Attention shounld be directed to this use of the word ¢ density.”—R.]
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In the first of these let 8, =8, § = v, B = nD ; then shall
2 .
B=—p+2020 o p=t

which evidently expresses the upward velocity given to the plane by the impulse of
one molecule when the velocity of incidence and reflexion is the same. The plane
ascends and descends the height due to this velocity, and then encounters the nextin the
succession of molecular impacts without any transference of force taking place between
them ; and n being taken an indefinitely great number, 8 is infinitesimal in respect
to v, and the height through which the plane traverses is also infinitesimal, so that 1t
is supported as if by a continuous force of upward pressure. The time between each
impact is, according to the law of falling bodies, equal to the time taken by the force
of gravity to destroy and reproduce the infinitesimal velocity v/n. This is 2v/gn : the
velocity which a free body gains or loses in a unit of time by the force of gravity
being represented by g. The number of impacts in a unit of time is therefore
gn/2v = A. This, then, is the relation between the weight of the plane, in terms of
that of the molecule unity, and the rapidity of the succession of impacts necessary to
support it in a condition of statical equilibrium. Now, if the plane forms part of
the surface that encloses the medium and that counterbalances by its weight the
effect of the impacts of the confined molecules, such effect must correspond with the
succession represented by A ; and we deduce that the elastic force of a medium, as
represented by the weight or pressure required to confine it, vs directly proportional to
he number of molecular impacts that take place against a wnit surface in a unit time
with a constant velocity (or e== A, if v is constant) . . . L

§ 3. Such being the nature of the elastic force, it will not be dlfﬁoult to prove
that it increases exactly as the density of the medium. The proposition stands thus :
if the number of molecules in a volume of the medium be doubled, the number of
impacts that take place on a constant surface in a constant time will also be doubled,
the velocity being unchanged.

Suppose the number octupled, the mean distance is reduced to one-half. If they
were equidistant and moving in one direction with the constant velocity, it is evident
that eight times the previous number would pass the same imaginary plane in the
same time, and if the plane were solid that eight times the previous number would
impinge against it. Now, although all do not move in one direction, yet in both
cases the same proportion of the whole must in each case do so. Whatever may be
the density no preference can be assigned to one direction more than to another in
the molecular movements ; they must in every case be equally distributed in every

# [The case is that where the particle (mass 1) and the plane (mass n) both reverse their velocities at
impact. The conservation of vis viva is thereby secured, and the condition of momentum gives at once
nf = v.—R.] '

MDCCCXCIL—A. C
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direction, and if the number is increased eight times in any one direction it must be
so in every other.

This may be viewed in another light. Suppose in both cases, the density being
1 and 8 respectively, that the molecules are arrested in their motion. It is evident
that opposite a unit of surface in density 8 there will, in the first row, be four times
as many molecules as in density 1, and that the average distance between the rows
is only one-half. Suppose the molecules to resume their motion, and compare density 8
with density 1, it is obvious that in half the time four times the number will impinge
on the unit of surface, and in the same time eight times the number. Now it has
been shown (§ 2) that the elastic force is proportional to the number of molecular
impacts made with a constant velocity against a unit of surface in a unit of time,
hence we deduce that the elastic force (e) of @ medwum with o constant mean molecular
velocity (v) is proportional to its density (A%) (or e = A3, if v or v” is constant). . IL

§ 4. Hitherto the molecular velocity has been supposed constant. We have now
to enquire how the elasticity of the medium is affected by a change in the velocity
from v to mv. The intestine action of the medium may be viewed as the traversing
of a certain mean distance, L, by the molecules in a given time, ¢; and in this time a
certain mean number, A, of impacts take place against a unit of surface. If the
velocity is increased m times, the distance L is traversed in 1/mth the time ¢, or ¢/m, and
in this reduced time the same number of impacts must take place as before took place
in the time ¢ ; for there is nothing in the change of velocity simply that can alter the
ratio that subsists between the mean distance traversed and the mean number of
impacts, unless that ratio were subject to change without any change whatever in the
medium, which is absurd ; hence, in the original time, ¢, there is m times the original
number of impacts, A.

Tt was shown in § 2 that if the weight of each of the molecules were represented
by 1, their mean velocity by v, and weight of plane supported by their impinging
action 7, the number of impacts in a second or unit of time required to support the

2 . . . . . .
plane is ‘%—Z = A, or n = g—Av, and this equation must evidently be maintained in

altering the value of the terms. Now, it has been shown that in changing v to mv in

. . 2
a medium that does not alter its density we cause A to become mA, and y Av becomes

2 2 : . .
“Amom = ~Avin® = nm®. Ience n, the weight of the plane, or measure of tension,
9 g

must be increased m? times so that it may continue to equilibrate the impinging

action. Thus, we deduce that while the molecular velocity increases from v to mw,
the elasticity increases from n to m®n or the elasticity of a medium having a constant
density is proportional to the mean square molecular velocity or vis viva of the medium
(or e =%, when A% is constant)®* . . . . . . . . . . . . . . . . IL

% [TL. and II1. were given by D. BervouLrl. See ¢ Poac. Ann.,’ vol. 107, p. 490, 1859,.—R.]
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§ 5. Combining II. with III. it appears that when both the density and the wvis
vive are subject to change that the elasticity is equal to their product, or e = A%?,
and this is the law that includes all the conditions of equilibrium of an enclosed
homogeneous medium. One other condition only remains to be specified. Under
constant pressure the density is inversely as the vis viva or mean square molecular

velocity (A3$$,ifeisconstant). P A4

§ 6. In concluding this part of the subject, we cannot fail of being sensible of the
analogies that subsist between these synthetical deductions and the chief properties
that distinguish aeriform fluids.

The first point that was inductively established is MARrIoTTE’S law, viz.: at the
same temperature the density of air is as tts compression. This is analogous to the
second deduction :—The square of the velocity being constant, the elastic force of a
medium is proportional to its density. The accordance appears as complete as could
be desired, and there is a residual evidence in favour of v* being identical with
temperature, or being a quality that varies simultaneously with it.

The second point is Darrox and Gav-Lussac’s law of expansion. By experimenting
upon the same weight of air at different temperatures under a constant pressure, these
philosophers found that an increment of one degree caused always the same
augmentation of bulk, and that this amounted to zigth part of the space that it
occupied at 32° Thus, if the same law hold good at all temperatures, 480 cubic
inches of air at this temperature should diminish one inch in bulk for every degree
it was lowered in temperature, and would become zero in bulk at 480° below the
freezing point of water, or — 448° on Fahrenheit scale.

T A3
occupied by a constant number of molecules; hence with the same constant number
of molecules the volume is as the mean square molecular velocity, and a constant
increment of vis viva is followed by the same increment of volume under a constant
pressure, and as the constant increment of volume (1 cubic inch) is to the constant
increment of wvis viva (1°) so is the volume (480 cubic inches) corresponding to a
certain vis viva (32° Fahr.) to that vis viva (480°).

The analogy therefore still holds good, and the evidence continues in favour of the
absolute temperature being represented by v*

When air is not allowed to expand and heat is applied, the elastic force increases
with the temperature, and a rise of 1° causes an absolute increase in the elasticity,
which is the same at all temperatures, and corresponds with the increase of bulk it
would assume if allowed freely to expand. This is analogous to III., where, the
density being constant or bulk unchanged, the elasticity is shown to be proportional
to the mean square molecular velocity.

Thus, the laws of MartoTrE and of DArrToN and GAY-Lussac are represented by

. .1 .1 . 1.
Now in IV. we had A3 = 52 0T v? = —, when ¢ is constant ; but s the volume

c 2
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the formula (448 4 ¢) A’ =¢; in which ¢ = temperature, Fahrenheit scale; A% =
density, and e = elasticity.

The law of elasticity in the hypothetical medium is represented by the formula
v’A? = ¢; in which +* is the mean square molecular velocity; A® = density, and
¢ = elasticity. '

The first expresses physical laws that have been jfound to belong to a certain
existent form of matter.

The second expresses physical laws that have been proved to belong to a certain
possible form of matter.

The cause of the effect represented by (448 - ¢) in the first is unknown, but has, at
various times, by eminent authorities, been referred to molecular motion.

The corresponding term, %, of the second represents molecular motion.

SecTioN I1.--ON THE PHYSICAL RELATIONS OF MEDIA THAT DIFFER FROM EACH
OTHER IN THE SPECIFIC WEIGHT OF THEIR MOLECULES.

§ 7. The synthetical deductions of last section apply to a homogeneous medium
without respect to the absolute weight of its molecules, if the weight of each molecule
is the same. This weight, common to all, may be viewed as the specific molecular
weight of the medium, and distinguishes it from any other medium with a different
specific molecular weight. We have now to enquire into the relations that subsist
between the density and molecular velocity of two such media that have the same
elagticity, or that are in equilibrium of pressure and also of vis viva.

We deduced from the law of impinging elastic bodies that if v represents the mean
molecular velocity in feet per second, A the number of molecular impacts in a second

. C . . . 2
upon a small elastic plane which is equal in weight to n molecules, then n = }Av.

. . : 2
Let o represent the specific weight of the molecules, we have wn = ;CUA?) = e = the

elastic force exerted by the medium on a unit of surface ;* and as this must in the

present enquiry be assumed constant, we may easily remark how a change in  affects
vand A.

. . . 2 . . .
It is evident that since "(a')’A?) is a constant quantity and o, A, and v variable, we
1 . . 2 . . 2
have Av=—; but e = wA®?(§5) = ?wAv, and, therefore, A% = ;A, or A = %A%, and
w

Av= L = A%?% Hence it is obvious that if A% the density or number of molecules
@

in a constant volume, as well as e, the tension, are constant, while the molecular

# ¢is the absolute weight of the small elastic plane that is supported by the succession of A number
of molecular impacts per second, the weight of each of which is w, and their common impinging velocity
v feet per second.
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velocity and specific weight are variable, these variables are bound by the relation
expressed by ©* = 1/w, which signifies that if two media are in equilibrium of pressure
and have in the same volume of each the same number of molecules, the squares of
their molecular velocities must be inversely as their specific molecular weights.
Hence, we deduce that if any number of separate media have equal density and
tensvon, the molecular velocity of each must be proportional to the inverse square root
of their specific molecular weight, or to the inverse square root of the specific gravity
of the media respectively™ . . . . . . . . . . . . . . . . . . . V.

§ 8. But media may be in equilibrium of pressure without being of equal density,
for a deficiency of density may be compensated by an excess in the molecular velocity.
It is plain that if e and v® are constant in any two media they may still be in
equilibrium of pressure if w is proportional to 1/A3, or if the molecular weight of each
medium is inversely as its density. If the specific molecular weights are in a constant
ratio to each other and the tension and velocity also constant, the media must be kept
in equilibrium of pressure if the density of each is reciprocally proportional to the
specific molecular weight of the other.

We have supposed hitherto that the media are separate while their respective
elasticities are compared. Let us now enquire into the effects of allowing them to have
access to each other. The united media immediately obtain a heterogeneous character,
for it requires no demonstration to convince us that the molecules of each will
permeate through the volume occupied by the other, the vacuities in the space
occupied by each presenting no more obstacle to the motion of one set of molecules
than it does to the other; and as collision must take place amongst them in every
possible manner and direction, the common space of the united media are free alike to
each individual molecule of both to range through in its zig-zag course. Consequently,
media n contact with each other become gradually equally diffused through their
common volume . . . . . . . . . . . . . . « . . . . .. . VL

The internal condition of the mixture must after a time become settled so that
in any infinitesimal portion the same mean velocity will be found proper to the
molecules of each medium respectively.

But as each of the two sets of molecules, although completely mixed together,
preserve their specific weights, so must they have corresponding specific velocities
that remain intact, notwithstanding that they as often impinge on molecules of the
other set as on the molecules of their own kind. It is of consequence to settle what
the ratio of these specific velocities is, for upon this point depends the nature of the
ms viwe equilibrium of different media, and we have to determine the relative
condition of two media when they are in equilibrium both of pressure and of vis viva.

# [The deduction of V. appears to be correct, though much embarrassed by the irrelevant g. In his
first memoir on the Theory of Gases (‘Poca. Ann.,” vol. 100, 1857), Crausius arrives at the same con-
“clusion. His assumption that the density (in WATERSTON’S sense) of various gases is the same, appears
to have been made upon chemical grounds.—R.]
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§9. We must now refer back to the equations of impact (§ 2). It is apparent
that the sum of the impinging wis vive of both molecules does not alter in either
the meeting or overtaking impact; what is gained by one is lost by the other, or
BB + 8D = BB + 3,°D = B,°B + 6,°D. But in every case except one a trans-
ference of vis viwva must take place from the one to the other.

The exception is found in the meeting impact when 8= 1/B and 6 ==1/D; then
shall B, = B and §, = 3, but at the same time B, is not equal to B, or 3, to 8;in every
other case 3, is not equal to 8 nor to B, nor is §, equal to 8 or to §,.

It can seldom happen that the molecules strike each other directly. In taking
account of the collective result of their fortuitous concourse we must view the position
of the plane of concurrence and the respective inclinations of the line of motion of
each molecule to it as three independent variables. The incident velocity of each is
the absolute velocity resolved perpendicular to the plane, and the equations apply to
this portion only of the vis viva of the molecules.

Although the variety in the mode of impact is infinite, it is certain that one
direction of motion is as likely as any other, and hence, that the opposite of any
direction is equally probable to the direction itself.

Let us confine our attention to any single case of impact and suppose that the
directions of the motions of the two impinging molecules lie on one side of the plane
of concurrence, then it appears that the nature of the impact must be overtaking.
Again, let us suppose that they lie similarly disposed on the other side of the plane;
the nature of the impact is again overtaking. Now, instead of having the opposite of
both the original lines of motion, suppose the opposite of one only is taken ; it is clear
that the nature of the impact is in this case of the meeting kind ; and the opposite
of the other line of motion being taken while the first is in its original position, the
impact is again of the meeting kind.

Each of these four cases are equally probable, and the resolved velocities, or the
values of B and 8, are the same in all, but two are meeting impacts and two are
overtaking, each couple having perfectly distinet numerical equations to define the
relation between the incident and reflected wvis viva. ,

We are thus obliged to infer that the intestine action of the medium must be
viewed in this manner as divided into two kinds of impacts specifically distinct in the
numerical relation that subsists between the velocity before and after concurrence,
and when employing the equations for summing up the results of the whole indefinitely
great multitude that tuke place in mixed media, the effect of any one meeting impact
must be considered along with its counterpart overtaking impact with the same
velocities.

§ 10. We have remarked that it is only the resolved portion of the whole vis viva
of a molecule that is dealt with by the equations—that forms the force of impact—
and it may be questioned whether the mean of these forces in each kind of molecules
bears the same proportion to each other as the whole vis viva of each. That the ratio
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is the same is best seen by the reductio ad absurdum method of reasoning. If the
ratio is different, the motions of the heavier molecules must be resolved in a different
way from those of the lighter, or the plane of concurrence must incline to one set of
molecules in a different manner to that of the other set. Now any such effect is quite
inconsistent with the fundamental hypothesis, and would require us to admit the
influence of a modifying power whose nature and mode of bringing about the effect in
question is unknown.

The ratio p of the resolved to the absolute vis viva is actually one-third, and will
become obvious in the next section, but it seems needless to require the demonstration
in this place as all that we have to be assured of is the constancy of the ratio, whatever
its actual value may be.

In seeking to demonstrate the nature of the wis wiva equilibrium, the solitary
condition that we have to reason from is that the mean value of (8, + B,%) is equal
to 2% (§ 2) and the mean value of (8?4 8,°) = 28% That this is a necessary
condition is obvious, because if either were less there would be a continual transfer
from the molecules B to the molecules D, or from D to B and vice versd.

By squaring the equations in § 2 and adding, we have the following :—

B+ B =2B =55 B+ Gp O+ A

4D 4B? o o
802+ 813=2{82—}3+D'82+(B+D)9'(8”+,8‘)}.

If in any case it happens that B8, 4+ B,° = B?, we shall have

4D 4D? L
'82<B T D) = @10y & +A)

or 2B = &D, and §,° + 8,° = 26°% Hence, if the squares of the impinging velocities
happen to be in the inverse ratio of the molecular weights, then in either molecule the
sum of the wis viva of the twofold encounter (one meeting, the other overtaking with
the same impinging velocities) before impact, or 2% is equal to the sum after impact,
or to B + B>

But this is only one case out of an infinite number where the ratio is different.
Generally, we may express the equation thus :

B+ B =2+ p, and 82 + 82 =28 4 ¢.

Now, suppose that in an indefinitely great multitude of impacts the sum of all the
individual values of B,2 + B,2 and 82 4+ §,? are taken, we shall have the mean of the
values of the first equal to B8,%p, in accordance with the necessary condition of per-
manence noticed above (by 8, we mean to denote the mean molecular vs viva or
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mean square velocity of the B molecules, &c.). The mean value of 8° 4 p is, there-
fore, 8,%p, but the mean value of B%is also evidently equal to B,%, as above ; hence,
the mean value of p is 0, or the positive values of p balance the negative values. In
the same way, it may be shown that the mean of the values of ¢ is also 0. Hence,
we deduce that B,2B =3§,2D, or that in mixed media the mean square molecular
wvelocity is inversely proportional to the specific weight of the molecules* . . . VIL

This is the law of the equilibrium of vis viva.

§ 11, Thus, it appears that the inverse ratio of the specific molecular weight is
that which is naturally assumed by the mean square molecular velocity of media in
contact, and according to the foregoing reasoning (§ 10), this is also the ratio that
ensures an equilibrium of pressure between media of the same density, or which have
the same number of molecules contained in the same volume. Thus, by combining
V. with VIL we deduce that media in equilibrium of pressure and vis viva are of
equal density, or have specific gmviﬁes frespectively proportional to their specific
molecular weights . . . . AN . . . . VIIL

§12. We may likewise rema,rk that as the mean value of the product BB is equal
to the mean &°D, or B,? = 3,°D, there s the same amount of vis viva or mechanical
Jorce contained in equal volumes of all media that are in equalibrium of pressure and
VISVIVAE . . . . . oo e e e e e e e e e e e e I

§ 13. If different media are placed in contact they must diffuse themselves through
their common volume with velocities proportional to their mean molecular velocity ;
but this velocity being in each inversely as the square root of its specific molecular
weight, which is equal to the square root of its specific gravity, we may deduce, by
combining VI. with VIL, that media in equilibrium of pressure and vis viva deffuse
themselves through their common volume with welocities tnversely proportional to the
square root of their specific gravity . . . o e . &

§ 14. Such are the principal points by Whmh dlﬁ’eren‘o medla are related to each
other. Their analogies to the properties of gases may be stated as follows :

(1.) The specific gravities of gases of the same temperature and pressure are respec-
tively proportional to their atomic weight. [The combining equivalents or proportions
may be viewed as simple multiples or divisors of the atomic weight or specific gravity. |

This is analogous to the VIII. deduction. Media in equilibrium of vis vive and
pressure have specific gravities proportional to their molecular weight. It will be
remarked that here again we have temperature represented by wvis viva.

(2.) It is considered as almost proved that gases in equilibrium of pressure and
temperature have, in equal volumes, the same absolute quantity of heat.

* [This is the first statement of a very important theorem. (See also ‘Brit. Assoc. Rep.,”1851). The
demonstration, however, of § 10 can hardly be defended. It bears some resemblance to an argument
indicated and exposed by Professor Tarr (‘ Edinburgh Trans.,’ vol. 33, p. 79, 1886). There is reason to
think that this law is intimately connected with the Maxwellian distribution of velocities, of which

- 'WarersToN had no knowledge.—R.]
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We have deduced, in reference to media, that when they are in equilibrium of
pressure and vis viva they have, in equal volumes, the same amount of vis vive.

(3.) It is considered probable that the quantity of heat contained in equal volumes
of all gases in equilibrium of pressure and temperature is proportional to their absolute
temperature ; and, in general, that equal increments of heat cause equal increments of
temperature or expansion.

In all media in equilibrium of pressure and vis viva the same increment of vis viva
causes the same expansive effect. (See also § 6.)

(4.) Gases, however different in specific gravity, when placed in connection diffuse
themselves equally through each other; and according to the elegant induction of
Dr. GraEAM (‘ Edin. Trans.,” 1831) the velocity of diffusion is inversely as the square
root of their specific gravity. '

This is very exactly responded to by the hypothesis. DArton’s law of diffusion
belongs to media as a necessary and the most obvious consequence of the constitution
assigned to them (VI.) Dr. GrAHAMS law of diffusive velocity or volume applies
also to media, because if placed in similar circumstances such an effect must depend
on the molecular velocity, which, singularly enough, bears exactly the like ratio to
their specific gravity (X.).

§15. In the first point of analogy it was stated the atomic weight of a gas
corresponded with its specific gravity, but with the reservation that the combining
proportions are simple multiples or quotients of the same. This appears to me to be
the fair statement of the remarkable connection that is always found between the
combining volume and combining weight. It seems impossible that the fact of a
volume of every gas containing the same number of molecules can ever be inductively
established, but all analogy leads us to this conclusion. One volume of oxygen
combines with two volumes of hydrogen to form two volumes of aqueous vapour. If
we inferred from this that one molecule of oxygen combined with two molecules of
hydrogen to form one of steam, we must admit that the molecule of steam occupies
double the volume of a molecule of hydrogen or oxygen. If it is admitted, on the
other hand, that the oxygen molecule is capable of disintegration, and that half a
molecule combines with one of hydrogen to form one of steam, the bulk of the three
molecules are equal. This last is the view that is responded to by the hypothetical
media. The objection to it is plausible from the natural repugnance to the idea of
dividing what has been considered as an ultimate element into parts, and of supposing
it possible that an element should have a strong affinity to itself-—for this point is
also involved. Half molecules of oxygen must have a powerful attraction to each
other as they never appear separate. It is the same with all the other simple gases
and vapours that combine in half or other fractional volumes. We have an analogous
example among the hydrocarburets. Methyl is half a molecule of olefiant gas, and
enters into distinet combinations similar in every respect to those of olefiant gas, but it

never appears in a separate form, Oleflant gas enters into combination with itself in
MDCCCXCIT~—A., D
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various proportions, forming etherine, ceten, elaen, &e., all of which are isomeric but
bave different specific gravities as vapours. These the chemist is unable to form
directly ; they are organic products and show a great molecular capability that is
undoubtedly common to all bodies.

There has certainly as yet been no recognised example of a simple element appearing
in the gaseous form with two specific gravities, but it would be rash to affirm that
such was either impossible or absurd. Indeed, chlorine, bromine, iodine, and fluorine
are so similar in their chemical qualities that it is not very unlikely they may be
examples of isomeric combinations of one base in which condensation of atomic volume
takes place simultaneously with increment of atomic mass. In the hydrocarburets,
on the other hand, there is little, if any, condensation of atomic volume, their specific
gravity in the liquid form being all nearly the same.

A strong argument in favour of the physical origin of the law of volumes is to
be obtained from the combination of acids with ether. Some of these rise up into
vapour in the same state of chemical union as when liquid, while others quite similar
are decomposed in the act of rising and occupy double the volume of the others.
Even those that are fully combined when they first rise, by an increase of temperature
not very considerable, are decomposed and immediately assume a double volume.
Oxalic and nitrous ethers are examples of the last kind. Sulphate and nitrate of
pyroxilic ether are examples of disunion in the act of rising.

If the hypothetical law of volumes is true in all cases, we should have to distinguish
between atomic weight and combining proportion. Thus, if the atomic weight of
oxygen is 1 (or specific gravity of gas), its combining proportions are %, 1, 1%, 2,
2%, 8, 34(?). If the atomic weight of hydrogen is 1, its ascertained combining
proportions are &, 1, 1%, 2, 3, 4, 5, 6, 8, 9, 16.  If the atomic weight of nitrogen is 1,
its combining proportions are 3 and 1. The same for chlorine is §, 1, 13, 2, 21;
for bromine they are %, 1, 1%4; for iodine, &, 1, 1} ; for arsenic, %, 1; for sulphur,
%> 5 for phosphorus, %, &c. These are necessarily derived from the specific gravity
of the simple gases and of their compounds.

The labours of Dumas, MitscuERLICH, REGNAULT, and BiNuAU, have extended the
list of gases and vapours, whose specific gravities have been accurately measured, to
nearly 150. Such determinations throw a light upon the atomic constitution of
compounds which it is impossible to obtain from their mere chemical analysis, and
form an important guide to theoretical discussion, when the arithmetic of volumes is
properly applied.

SecrioN III.—ON THE PHENOMENA THAT ATTEND THE CONDENSING AND DILATING

oF MEDIA, AND THE MECHANICAL VALUE OF THEIR MOLECULAR Vis VIVA.

§ 16. In the first section a distinct idea of the elastic force of the medium was
obtained by viewing it as a rapid succession of impacts on the lower surface of a
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gravitating elastic plane ; and the equilibrium as being maintained when the upward
velocity given to the plane by the shock of one molecule was equal to the downward
velocity given to it by gravity acting through half the infinitesimal portion of time
that elapses between two successive impacts. During the first half of this time
gravity acts in destroying the upward velocity : during the second half it acts and
generates the same velocity downwards, and by applying the equation for the meeting
impact (§ 2) we found the relation between the pressure and the number of impacts in
a given time. This relation is expressed by gn/2w = A, in which n is the number of
molecules whose aggregate weight is the weight of the plane supported by A number
of molecular impacts in a second of time : the impinging velocity being w, and ¢ the
accelerating force of gravity. It was also shown that the upward velocity given to
the plane by one impact is w/n, and this is likewise the descending velocity with
which it encounters the molecular shock.

~ We have now to examine the case where the encounter takes place with the plane
at rest. Applying the equation for the meeting impact as in § 2, and putting
e=B=0;n=B; D=1; w=23; we have

6 =pB,= nz—fl = velocity upwards of the plane after the shock ;

2w 2um w

nrl s T T T

Wy =8 = w —
= velocity downwards of the molecules after the shock.*

Thus, » being an indefinitely great number, we have the ascending velocity of the
plane €, = 2w/n, being double what it was in the former case when the result of
the impacts was statical equilibrium: and the decrement of molecular velocity
= w — w, = w/n, which is a new and important feature. In the former case there
was no decrement of molecular velocity : the molecule and plane continually meeting
and retreating with velocity of impact and reflexion the same, and inversely
proportional to their respective weight.

1 e ., 2w o e . 2u\? 2u*

With its velocity ; the gravitating plane ascends to the height ( —g;b> ig = i 0
that the weight of n molecules is raised through this height by the decrement w/n of
the impinging velocity w of one molecule. Employing the differential notation,

\

* [Tt is easy to see that in the case supposed ne, = 2w, when # is great, so that the velocity of the plane
is 2w/n ; but in the next step there is an unfortunate error which runs through many of the subsequent

deductions.
. .o ( 2w \ 2w
0= Q=W T T \—w+n+ 1) ¥~ uns1)
not — <w ——%—qf_—ll\ The vis viva expended in raising » to the height 2u?/gn® is thus 4w?/n, not
2uw?/n.—R.]

D2



20 . MR. J. J. WATERSTON ON THE PHYSICS OF MEDIA COMPOSED OF

dw = w/n; and 2dw w = 2u?/n = dw?, the vis viwa expended in raising n to the height
2% gn?,

§17. If we recur to §4 we may remark the necessity of considering molecular
velocity in two points of view when applying the arguments of §§ 2 and 16 to an
enclosed volume of a medium. The first point is that upon the molecular velocity of
impact depends the intensity of the shock on the plane, the ascending velocity given
to it, and therefore also the time between the impacts, if the weight of the plane is
considered constant. Thus as any one velocity is to the time of ascent and descent
of the plane caused by that velocity, so is the mean of the impinging velocities to the
mean of the time intervals, or inversely as the number of impacts in a unit of time ;
and the equilibrium does not require that the succession of impacts should be
regular ; the rapidity of the succession may fluctuate, but the average time and
velocity must be constant. The second point is that any augmentation of velocity
causes an increase in the frequency of the encounters (§ 4). In the equation ng/2w = A,
if A were not a function of w it would remain unchanged, if n and w increased or
diminished in the same proportion ; but it was shown in § 4 that it was proportional
to w, when A®, the density, is constant, and to A* or n or ¢ when w is constant ; hence
A = wc A%, in which ¢ is a constant factor that has to be determined. We have also
to determine the ratio between w? the mean square impinging velocity, and +% the
mean square absolute molecular velocity, in the equation ng/2w = A = wc A%, or
n = 5- we AP,

Suppose the unit of volume in which the medium is confined to be a cube, the
upper side of which is the plane n, and let +* be the mean square velocity of the
" molecules, so that if the squares of the respective velocities of all the molecules be
‘added together, the sum will at all times be equal to A*+®. Resolve the motion of
each molecule at any instant into the six rectangular directions parallel to the side of
the cube and add up the squares of the resolved velocities that are perpendicular to
one side ; it is evident that the sum must be & A% +?, as the force is equally distributed
in every direction, and in the stratum of the medium next the plane n one-sixth of
the force of the molecules that happen to be in the stratum at any given instant is
directed perpendicularly upon the plane. Suppose the breadth of the stratum
is 1/A, the number of molecules that at all times are to be found moving in it is A% and
half of these are diminishing their distance from the plane, and half increasing their
distance with the mean square velocity % v*

The molecules moving equally in every direction must necessarily impinge equally
in every possible direction on the plane, so that if their lines of motion were brought
from every point of the surface of the plane where they impinge and made to issue
from one central point, they would radiate equally to every part of the hemisphere ;

and as soon as those belonging to any one direction have impinged and thus with-
drawn from forming part of the constant aggregate force §v? A% their place is
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immediately supplied by others of the same entering the stratum. The time taken
by the set whose velocity is » and inclination to the plane @ to traverse the breadth

1
of the stratum is evidently as o and in a unit of time the number of the impacts

in the succession of these belongmg to the set is proportional to w sin . But this
is the value of the resolved velocity of the set. Referring back to the reasoning
in §§ 2, 16, the supporting effect of each impact on the heavy plane n was shown
to be proportional also to the velocity of impact or molecular velocity resolved
perpendicular to the plane. The supporting effect of each set in a unit of time is
therefore as the square of the resolved or impinging velocity of the set. But the
mean of all the square impinging velocities is 447 and half the molecules in the
stratum are continually approaching the plane ; the supporting effect of their con-
tinuous action is therefore the same as would be derived from the medium reduced to
half density advancing against the plane with the uniform velocity +/Iv% Now as A3
represents the number of molecules in the cubical unit of volume, the side of the cube
being the unit of length, and +/%v? the number of such units traversed in a unit of -
time, the supporting effect of the medium on the heavy plane n in the unit of time,
is the same as that derived from 3A3,/1v? molecules impinging with the velocity 1/3v%
Hence it is obvious that A = LA3,/3¢% and w = v/10%, or ¢ = 1, and 3u? =% Also

2 22 AP n
— 2 e A5 — 2. 2 A8 = Som: or v = ,\/ L
n gwcA 37 ; or v gn ; or 39A3

Thus we obtain an expression for the square root of the mean square moleculs
velocity in terms of the height of a uniform atmosphere A*” or what is the same, in

terms of the ratio of the number of molecules in a column of the medium of the height
of a uniform atmosphere to the number in the column of a unit height : and since
v/2gh expresses the velocity acquired by a body in falling through the height 4, we
arrive at the following deduction. .The mean square molecular velocity of o medium
vs equal to the square of the welocity that a body acquires in falling through one-and-
a-half times the height of o uniform atmosphere ; if the pressure of the medium is
estimated from the effects of the molecular impacts on a perfectly rigid and elastic
surface. If it were estimated by the effect on molecular elastic surfaces, there is
reason to believe that the mean square velocity is double the amount specified
(see Sec. 4) . . . . . . B € B

§ 18. Suppose that the cublcal Volume of the medium receives such an 1n01ement of
2
vis viva that under the constant pressure n the volume from 1 becomes 1 - ;/;b;; 1t

has been shown in § 5 that the molecular vis viwa must also from 1 have become

* [The author here arrives at the correct couclusion,
v = 2q.8h. —R.]
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1 + — that it may sustain the same pressure with the reduced density. But the

molecular »s vive, in the cubical volume is A% 9® : hence we have the proportion

22
1: 1—|——Z—:2- D A3 A3'02<1+£>;

gn?

. . . . . . . 2'[1/2 .
the increment of vis viva in the contained medium is thus A3 ¢? But 1t has been

gn®’

2 20?
shown in § 17 that w® = +v°, and gn = $v* A%, hence A% »® g’;’: v

a

Now in § 16 it was shown that to raise the weight of % molecules to the height
2wt/gn® the wvis viva expended was 2w?n = % v*/n; comparing this, the vis vwa
expended in the act of increasing the volume, with 2v%/n, the increment of vis viva
required to support the increased volume, it is evident that the ratio is exactly
one-third. Thus we deduce that to effect one increment of expansion i the volume of
a medium subsisting under o constant pressure, four-thirds of an increment of vis
viva, are required : one of which thirds is expended in the act and does not appear in
the medium: the remaining three-thirds, or one increment, appears in the medium and
assists wn sustarning its augmented volume® . . : .. . . .. XIL

§ 19. This result is a necessary consequence of the perfect conservation of vis viva
in the impinging action of perfectly elastic bodies. To enlarge a volume that is pressed
upon is to raise a weight ; is to expend mechanical force ; is to expend molecular vis
viva, and the last train of reasoning has led us to the relation between the molecular
force expended and the work performed by it.

The mechanical value of the whole of the vis viva of the medium may be ascertained
by the following proportion

2 207 A3 22 A3 22
. N T R — 1A3.2 tharefor —
Sy g AT " But gn = A3 ¢?, therefore = 3.

Thus the vis vive expended in raising n, or the constant pressure, through the in-
crement of the unit of volume, is to that increment as the whole vis viva of the
medium is to three units of volume. Hence we deduce that if a medium is supposed
to expand to four times its original volume with its original tension undiminished, it
will in doing so expend as much as the whole of its original molecular force. This
may be more concisely expressed by : The molecular vis viva of o medium s equal to
uts tension acting through three tvmes its volumet . . . . . . . . . . XIIL

* [The corrected version of XIIL. will be “To effect one increment of expansion in the volume of a
medium subsisting under a constant pressure, five-thirds of an increment of wis viva are required; fwo
of which thirds is expended in the act, and does not appear in the medium ; the remaining three-thirds,
or one increment, appears in the medium, and assists in sustaining its augmented volume.”—R.]

+ [This is the virial equation applicable under the supposed conditions.—R.]
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§ 20. If a medium is not allowed to increase in volume while its vis vive is
increasing, no force will of course be expended, and each increment of wis vive
engenders a like increment of tension. Thus if we compare the amount of vis viva
required to produce an tnerement of molecular vis viva in the medvum, wn the two cases
of constant pressure and constant volume ; ot 1s manifest that the ratio is 4 to 3,
01'4/3..... . . . . XIV.

§ 21. If we suppose the heavy plane n 1nstead of bemg ralsed by the medium to
descend upon it through the same differential height 2w®/gn? it is obvious that the
same differential vis vive that was formerly abstracted is now communicated to the
molecules of the unit volume. Force is exerted by the descending weight upon the
medium and is transferred to its molecules.t Thus it is evident that the conversion
of mechanical force into molecular vis viva is subject to the same law as the conversion
of molecular vis vive into mechanical force. This law is expressed in XII. and XIV.
The following is another form of annunciation which refers to an experimental method
of ascertaining it if such media were actual existents. The rateo of the tncrement of
vis viva evolved by a small condensation of o medium to the dvmainution of molecular
vis viva required to maintarn the same condensation under o constant pressure
AL . o o e e e . .. . .. . XV

§22. If a medmm is compressed or dllated and the molecular i VIV evolved in it
or given out from it by the act of condensation and dilatation be retained, let us
enquire into the ratio of the density to the pressure. The preceding reasoning has
shown that the increment or decrement of ws viwa is equal to one-third of the

dv®  dA3 2dv  dA . .2
increment or decrement of density, or = aas hence = A which being
integrated gives v? = A. But v A3 = ¢, therefore A* = ¢, and v* = «~/e. Thus we
deduce that +f o medium, is compressed or dilated ﬁﬂom a gien condition of density
and wvis viva, the mean square molecular velocity vares as the fourth root of the
tenston or as the cube root of the density§ . . . . . . . . . . . XVLj

§ 23. The tendency of media to have their vis viva augmented when being forced
into smaller volume is very similar to the rise of temperature that appears in air
when being condensed. Thus tinder may be inflamed by the sudden compression of
a small quantity of air, and on charging an air gun the condenser and force pump
become so hot as to be painful to touch. Again, mercury may be frozen if exposed to

a jet of air escaping from a state of high compression and expanding against the

# [The ratio of specific heats, commonly called «, should be 5 : 3, not 4 : 3.—R.]

+ Note A (motion indestructible as matter).

1 [This result also requires correction.—R.]

§ Note B (vapours).

Il [The corrected argument is:—Since dv?/v? = % dA3[A3, we get dv/v = dA[A, or v = A. Accordingly

= A? = (A%)3.  But 9?°A% = ¢; therefore, AS -'_ e, and v? =el Also e= (A%)% or p = p¥, where
v =4—R.]
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atmospheric pressure. Media also lose their wvis vive if allowed to expand against
pressure.

Thus by XVL, if at 60° Fahr. a vessel containing air of double density is allowed
to empty itself into the atmosphere, the decrement of temperature in the air that
remains ought to be — 48° by the XVI. deduction. If on the contrary its density is
suddenly increased from 1 to 2, its temperature ought to rise to 196°.%

Thus the analogy between media and gases and between vis viva and temperature is
still maintained, and the phenomena of latent heat in gases appear also in media as
the transference of force during a change of volume : out of the medium when it
expands, and exerts, or gives out, mechanical force; wnto the medium when it is
compressed and acted upon, or receives mechanical force.

The phenomena of latent heat thus appear to be the conversion of mechanical force
into molecular vis viva; the visible into the invisible, as in condensation: and
molecular wis wviwe into mechanical force; the invisible into the visible, as in
expansion. .

It is a necessary consequence of the conservation of wis viwa or indestructibity of
force among perfectly elastic bodies.

§ 24. Several experiments have been made on the ratio of the increment of
temperature evolved by a small condensation of a volume of air to the diminution of
temperature required to produce the same condensation under a constant pressure, and
found it to be . Mr. Ivory (‘ Phil. Mag.,’ 1827) has proved that this ratio is constant
under every change of temperature or density so long as Davron and Gay-Lussac’s
law is maintained, or the air thermometer is an exact measure of heat. MM. Gay-
Lussac and WELTER have also proved this experimentally for a considerable range.
Mr. Ivory has also expressed his opinion that the nascent value of this ratio will be
found to be §, and that the cause is probably connected with the proportion that
subsists between the linear and the solid increments of expansion.

The value of this ratio in all media, whatever may be their condition of density or
vis viva, is % (§ 21) ; and the synthetical demonstration rests on the same fundamental
principle that determines the proportion of linear to solid increments of expansion,

This ratio § applies only to infinitesimal changes of volume, and it slowly increases
with the amount of condensation. When the medium is compressed from 1 to 1-20
the ratio becomes §.t

In the experiments of MM. Gav-Lussac and WELTER referred to in the ‘Mg¢-
canique Céleste, the condensation did mnot exceed Fgth part of an atmosphere.
The discrepancy may be exactly ascertained by performing the same experiments as
it were on the medium by computation. The absolute temperature is denoted by »*

* Note C (temperature of condensed air),
t Note D (to find the compression that corresponds with a given ratio between latent and sensible
heat.)
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and the absolute zero corresponds to — 461° of Fahr. scale (taking RUDBERG’S constant
of expansion, see § 6). By employing the equation e = v* A% and <é«> = v(’ ; (XVI),
1

it is easy, by substituting the barometric height for ¢, to compute the result of any
given experiment as if it had been performed on the hypothetical medium. This I
have done in the case of MM. CriMENT and DEsorMES’ experiments. Referring to
the account given of them in the ¢ Mécanique Céleste,” the minus interior pressure of
the medium would have been 342 millims. ; the mean result is given as 3'61, the
difference being only about 14gth part of an inch of mercury. If the experiment gave
the nascent ratio, the minus pressure at the end would have been one-fourth of
the minus pressure at the beginning, or 8:45 millims. In MM. Gav-Lussac and
WELTER’S experiments, the difference of pressure at the end was 4'44 millims. ; the
nascent ratio in a medium would in a like experiment be 4:09 millims., the difference
being about +%th of an inch of mercury.

The evidence afforded by these experiments may be summed up as follows :—

The initial ratio of the increment of vis wwa under a constant volume to the
increment required to effect the same change of wis viva under a constant pressure in
the medium is .

. . . 3 . . . . 1 3 5
In air the same ratio of the mcrements of heat lmder the same circumstances by
MM. CrimeNT and DESORMES’ experiments, is . . . S s 7 T

In air the same ratio, by MM. Gav-Lussac and WFLTERS expenments, is .

A difference in the reading of the height of the mercury in the manometer of +§5th
and +gth part of an inch would bring the respective experiments to coincide with the
theory

§ 25. In the more recent of Mr. JoULE'S physical researches that gentleman has
applied mechanical force to the compressing of air surrounded with water, to collect
the heat evolved, and has found that about 800 Ibs. descending through the height of
one foot increases the temperature of a pound of water one degree. The same result
nearly was obtained by forcing water through narrow tubes. Mechanical force was
expended, and the same proportionate amount of heat was produced in the water. It
is remarkable that the same mechanical value was found for the heat generated by the
magneto-electric machine. Such accordance in the results, as Mr. JouLe remarks,
seems strongly to favour the wis viva or vibratory theory of heat.

If air is similar in its constitution to a medium we may employ the deductions of
this section to determine the mechanical value of any quantity of heat applied to it,

#* [The fair agreement of the erroneously deduced value of «, viz., £, with observation, was doubtless
the reason of the author not discovering his mistake of calculation. We know that upon his principles
the calculated value should be 4, which accords much less well with the results observed for ordinary
gases than does 4. It should be borne in mind that the observed value, 4 =1'405, has not, even at the
present time, been reconciled with theory, although reasons may be given for a departure from « = &.
—R.]

MDCCCXOTI —A. E
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and assuming the specific heat of air to be 0'238 that of water,™ we may ascertain the
mechanical value of 1° applied to 1 1b. of water, which is equal to 5=355 degree applied
to 1 lb. of air. Since 820 cubic feet of air at 60° and 30 in. tension weigh as much as
one cubic foot of water, we have §28d5 = 3444 cubic feet of air which, heated one
degree without being allowed to change its volume, requires as much heat as one
cubic foot of water to raise it one degree. The absolute temperature at 60° is 520°,
and one degree added augments by 53 part the absolute heat or molecular vis viva of
the air. But the whole vis viva in 3444 cubic feet of air at the temperature 60° and
pressure 30 in., is equal to the whole pressure of the atmosphere on a square foot,
acting through three times 8444 feet in height, or 10,332 feet (XIIL). The pressure
of a column of 30 inches of mercury on a base of 1 square foot or 144 square inches
is equal to 14722 lbs. X 144 = 2120 lbs. This weight raised through 10,332 ft.,
corresponds to 21,904,000 lbs. raised one foot high, and 3}y part of this, or
42,043 lbs., raised one foot high represents the absolute mechanical effect of 1° of
heat applied to one cubic foot of water. Dividing this by 62}, the number of Ibs. in
a cubic foot of water, we get 673 lbs. raised one foot high equal to the mechanical
effect corresponding to 1° of heat applied to 1 Ib. of water. This compared with
Mr. JouLE's result is not unsatisfactory considering the difficulties that attend the
experiments that afford the data.t} '

SecrtoN 1V.—Ox taE RESISTANCE oF MEDIA To A MOVING SURFACES

26. The simplest case of resistance is that attending the motion of a rigid and
perfectly elastic plane moving in the direction of its perpendicular.

Let the velocity of its motion be z, which we must at first assume to be indefinitely
smaller than v, the square root of the mean square molecular velocity. Let a molecule
with velocity u, impinge on the front surface of the moving plane at an angle 6;
the impinging velocity is w sin 6; and applying the formula for the meeting
impact (§ 2) the velocity of reflexion is wsin 6 - 22, and the square of this is
w? sin® 0 + w sin 6 4z -k 422  The increment of molecular vis viva received from the

% Note H (specific heab of air).

+ Note F' (M. Orarevrox’s view of the motive power of heat examined),

1 [This is an independent calculation of the mechanical equivalent of heat, quite distinet from that of
Mavir.—R.]

§ [The weak poinb in the argument of this section appears to be the neglect of the effect of the altered
velocities of the reflected molecules in disturbing the condition of those about to impinge. The results
can only apply when the dimensions of the obstacle are small in comparison with the free path of the
molecules.

The non-agreement of his theory with observations upon the resistance experienced by obstacles which
do not comply with the above condition, unfortunately led the author to take the step in the wrong
direction explained in §§ 27, 28. But it is proper to note that the author speaks with hesitation (§29).
~R.]
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plane is therefore u sin @ 4z. To find the increment given to the medium in a unit of
time we have first to consider the number of impacts in the unit of time if the plane
were at rest, and then the additional number owing to its motion. Referring back to
the reasoning in § 17, it has been shown that the impinging velocity wsin @ is
repeated u sin @ times in a unit of time ; hence the increment of vis viwa in the unit
is u? sin® @ 4z, and as the mean of all the values of u? sin? @ is w? = 1v?, we have—
following the reasoning in § 17, and supposing the surface of the plane to be equal to
the side of the cube that contains A% molecules—the increment of vis viva given to the
medium by the front surface in a unit of time is § A®v? 42. By applying the same
reasoning to the back surface of the plane the same amount of vis viva is found to be
taken from the medium on that side.

We have now to consider the additional number of impacts due to the motion of
the plane. Let us first suppose that no change of density is caused by the motion.
The action of a medium on a surface at rest is the same as that of a uniform current
of molecules whose mean distance is v/% A® and velocity w (see § 17), and in the same
manner the surface meeting this current with the velocity z, the effect is the same as if
the velocity of the current were increased to w + 2z The additional number of
impacts due to the motion of the plane is therefore 4 A®z, and the mean increment of
vis vive to each being 4z, the whole increment in the unit of time is 2A32% The
same reasoning applied to the action on the back surface shows that the diminution in
the number of impacts is also 4 A%z, and the mean decrement of wvis viva caused by
each impact being also 4z, we have the decrement of vis vive in a unit of time also
2 A%7% The sum of these 4 A%z* is the force required to move the plane with the
velocity z.  The weight n, whose pressure is equal to this force, is found as in the last
equation of § 17 : there we had w® A% = ng, and in the same way here we have

4
42° A3 = nyg, or ny = ;/zg A3,

This result differs very much from the actual resistance of a body moving in air as
observed by RoBins and HurroN. In Hurrox’s Dictionary it is mentioned that the
resistance to a surface of one square foot, moving 20 feet per second, was found to be
12 ozs., and that it increased as the square of the velocity. Now if we compute the

. 1 c 1 .ps
resistance by the formula 7 2¥ A3 = p, which is the common theory at low velocities,

we shall find n, to be 15 ozs. nearly, when z is 20 feet per second, the weight of a
cubic foot of air being represented by L%%> oz.

Here then is a notable discrepancy ; the resistance of the medium that represents
air in specific gravity and tension appears to be four times greater than it ought
to be.

§ 27. We have all along assumed, for the sake of simplicity and to avoid any
addition to the fundamental hypothesis, that the surfaces upon which the medium
acts are perfectly rigid as well as perfectly elastic, although no such surface, so far as

E 2
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we know, exists in nature. If molecular vis vive is heat, the molecules of solids must
be in motion as well as those of gases; and the nature of the motion must be such as
to permit the equilibrium of vis vive to be established between them respectively.
They must also be perfectly elastic; but a surface composed of them cannot be
assumed as perfectly rigid. '

The original hypothesis in respect to gases involves the necessity of making certain
assumptions respecting the physical condition of the surfaces upon which media are
supposed to act.

(1.) That they are composed of molecules in a state of vibratory motion which results
from the struggle that their vis instta makes with the attractive and repulsive forces
of aggregation.

(2.) The nature of these vibrations and forces may remain undefined, further than
that the wvis wnsita proper to a molecule is alternately destroyed at the extremities,
and reproduced in the middle of each vibration when it and the surrounding
molecules are in equilibrium of vis viva.

(8.) The impact of the molecules of a medium on the molecules of the solid surface
is that of perfectly elastic bodies, and enables the equilibrium of wis vive to be estab-
lished between them.

This equilibrium must be effected by a continual interchange of wvis viva, the
molecules of the solid giving to the molecules of the medium and wice versa.

In the case of a heavy molecular plane supported by the elasticity of the medium, as
detailed in § 2 and § 16, the impacts that take place on the lower surface, establish
both the molecular vis viva equilibrium, and also the statical equilibrium of the heavy
plane.

Does this new condition of surface upon which the medium acts, make any change
in the relation ng/2v = A, that was shown to subsist between the impinging velocity of
succession, and weight supported when the surface was assumed as perfectly rigid ?
Then, the molecules of the medium encountered at each impact the whole wis insita of
the heavy plane and communicated directly to its centre of gravity a certain infini-
tesimal velocity. Now, it strikes a vibrating molecule which afterwards communicates
a certain effect or infinitesimal velocity on the centre of gravity of the molecular plane.
Let us endeavour to gain a clear idea of the numerical relation between the effect
and the cause that produces it, viz., the impinging force of the free molecule of the
medium,

The centre of gravity of the whole molecular plane being at rest while the centre of
gravity of each of its molecules is in a state of intense vibration, it is evident that
the track or orbit described by the centre of gravity of one of its molecules must be
exactly imitated but on an infinitely reduced scale and in a reverse direction by the
motion of the centre of gravity of the remaining molecules of the plane. The action
and reaction of the molecular forces are equal. At any point of the orbit of one of the
lower molecules of the plane let a free molecule of the medium impinge. If they are
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equal in mass they will exchange impinging velocities ; this interchange modifies the
vibration and disturbs the harmony between the simultaneous motions of the centres
of gravity above referred to; the motion of the centre of gravity of the molecule
changes suddenly, not so with the centre of gravity of the remainder of the plane. If
the connection between the plane and the molecules were broken at the instant of
impact, it is clear that the centre of gravity of the remaining molecules of the plane
must continue to move in the direction and with the velocity it had at the instant.
Now as the concurrence may take place at any part of the vibration, either going or
returning, it is plain that the mean motion of the centre of gravity of the remainder
of the plane caused by the transference of vis viva from the molecule of the plane to
that of the medium is zero. But the centre of gravity of the remainder of the plane
reciprocates the active effect of the molecular force on the new velocity until it is
destroyed at the end of the first vibration ; the molecular force acting as much on the
remainder of the plane as upon the molecule. The destruction of this by the mutual
binding force destroys in the opposite direction the same amount of vis insita in the
plane, or generates it in the same direction, and as we have to attend only to the
effect upon the centre of gravity of the plane made by the motion transferred from
the medium to the molecule of the plane, the mean effect must be equal to the mean
incident vis wnsita of the molecules of the medium; in short the same as if the striking
molecule cohered to the plane after impact. This is the case if the plane is at rest
when struck, but a condition of statical equilibrium requires that the infinitesimal
descending motion by gravity should be equal to the ascending infinitesimal motion
given by the impetus of the striking molecules. The upward velocity therefore given
to the plane by this impetus is only one half what it would be if the plane were at

{)
rest when struck (see § 2). Thus the expressmn — (see § 2) becomes - , and

n+ 1
v/n becomes v/2n, and gn/2v = A becomes gn/v = A.

These alterations make no difference in the subsequent reasoning until we come to
§ 17 where the equation for A is employed, and in consequence of its change of value
the terminal equation A®v® = 3gn is changed to A% v? = Ggn.

This alters the value of v from /\/ 39 o A3’ the velocity acquired in falling through one

and a half uniform atmospheres, to 4/ 69 Ké , the velocity acquired in falling through

three uniform atmospheres, and the numerical value of v in the medium that corre-
sponds with air at the temperature of melting ice is 2244 feet per second. _

§ 28. As this change in the value of v reconciles the discrepancy in the theory of
resistance, and in the subjects of the two concluding sections, it may be proper to
illustrate by diagram the general principle that the mean impinging effect of free
molecules on a cluster of cohering molecules is the same as if’ the striking molecules
cohered at the instant of impact.
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Let P be the molecular plane consisting of (n — 1) molecules, and Q one of its lower
molecules at rest between attractive and repellent forces.

Rig. 1.
®C
P

A~
o

kN

(1.) Let Q receive an impulse in the direction GQ, so that its initial velocity may be
QE =v; it will proceed along the line QA until its motion is subdued at some point
A by the molecular repulsive force; at the instant when the centre of gravity of the
molecule Q, and centre of gravity of P, are at their minimum distance both move
together with the common velocity v/n, and this is the velocity communicated to their
common centre of gravity, which is not disturbed further by their mutual action during
the vibratory motion that ensues. In this case there is both molecular vis viva com-
municated to Q, and also the velocity v/n to the common centre of gravity, and a free
molecule of the medium has lost the velocity w.

(2.) Suppose, in the next instance, that the centre of gravity of P -4 Q or n to be
stationary, while Q is continuing its vibrations, and let it be struck when at the
centre of its descending vibration by a free molecule having the same velocity QE.
They will be reflected from each other without gain or loss of motion, and Q will move
back towards A instead of forward to G. Here there is a loss of the down motion
and the gain of an up motion. By the first (1.) the centre of gravity of P continues

to ascend with the velocity ;-i_ that it has at the instant of impact; and as the

downward force of Q that subdued this is gone, the centre of gravity of the whole
P 4 Q or n molecules acquires the permanent upward velocity v/n. By the second (2.)
the same velocity v/n is given to the common centre of gravity by the gain of the up
motion as in the first case of impact. The result of the second mode of impact is thus
to communicate the velocity 2v/n to the common centre of gravity.

(8.) If the same kind of impact takes place with Q in the middle of the ascending

vibration, it is evident that the force of impact is zero at that point, and the upward
velocity to the centre of gravity zero. Now (;v + O> + 2 (impacts) == % This result
is more obvious if we assume the velocity of the free molecules v 4 A and that of Q = .

D
The result of the first of these is = ::—Z” , and of the second % . Half the sum of these
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js LE2 , and thus the mean result of these two equally probable impacts is the trans-
mission of the vis tnsita of the impinging molecule to the plane as if it cohered to it
after impact.

(4.) At either of the extremities of the vibration the same law obviously applies, but
it is the two impacts where vis viva is taken from and again returned to Q whose effects
ought to be viewed together. In the meeting impact let the velocity of Q from v
change to u with a different direction ; then according to the second case of impact the
V4 v—u

upward effect on the plane is to give it the ascending velocity s and the loss

of velocity is v — u.  Let this loss be returned in an overtaking impact so that v — «
shall become v ; then according to the first case of impact the upward effect on the
plane is u/n. In these two impacts Q returns to its original condition of motion,
and the mean effect is v/n. A continual and equal interchange of vis viwa being
necessary to the persistent molecular condition of the plane and of the medium, the
same is effected by means of impacts which take place equally in the ascending
and descending vibration. This equality seems to be a necessary condition because
the motions that are taken account of are the velocities of impact resolved in a vertieal
direction only, and the plane of impact cannot now be assumed always to be horizontal
as in the case of the rigid plane; hence the absolute velocity in the vibration and the
resolved impinging velocity are independent variables.

§ 29. Such is the view of the phenomena which seems to authorise the change that
has been imposed on the value of the mean square molecular velocity. It has no
pretension to be considered as a demonstration, and we are therefore not permitted to
make use of it as a synthetical deduction from the hypothesis.

Nevertheless, if it is admitted as being probable, the probability is increased if it
‘reconciles at once all the discrepancies that have been met with, and at the same
time neither affects any one of the preceding deductions where the analogy to the
properties of gases is perfect nor introduces any other point of discordance.

If we now revise the mode of estimating the law of resistance in § 26 it is obvious
that the mean increment of velocity communicated by the plane now considered as
molecular to the free molecules of the medium is not 2z, but z, and hence the mean
increment of vis viva in each incident molecule is not 4z, but 2z, and the increment in
a unit of time not 2A%2% but A®z% The sum of the front increment and back decre-
ment is not 4A%2% but 2A%2%; and as w® A% is no longer equal to ng, but to 2ng, we have

. 1 Cp . . .
2A%2° = 2ng, or n = pr A3 7%, which is the equation derived from the common theory of

the resistance of the atmosphere at low velocities.

It will be remarked that the resistance is as much derived from the minus pressure
behind as from the resistance in front, whereas the common theory only takes account
of the inertia of the front which is assumed at low velocities as constituting the whole

of the resistance.®
* Note G (objection to undulatory theory of heat).
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SuctioN V.—ON muE VERTICAL EqQuIrisriuM or A MEDIUM, SUPPOSING IT TO
* FORM THE ATMOSPHERE OF A PLANET.™

§ 80. Suppose the height of the atmosphere AB to form the axis of a parabola of
which the vertex A is at the summit. If a body begins to fall from A it is evident
from the law of falling bodies that its acquired velocity at any point is porportional to
the ordinate of the parabola at that point.

Divide AB into an infinite number of parts so that the length of each shall be
proportional to the ordinate of the parabola at that part. Suppose that in each of
these parts one molecule is vibrating upwards and downwards, striking against the
upper and lower molecules of the adjacent parts with a velocity proportional to the
ordinate of the parabola and equal therefore to what a body would acquire in falling
from the vertex. It is evident that each of the parts or infinitesimal divisions will be
traversed in the same time dt by its molecule, and that the impinging velocities of
each pair are equal, so that there is a perfect equilibrium and constancy of phenomena ;
but the upper impact of a molecule against the one above it is made with less velocity
than the lower impact against the one below 1t, because the accelerating force of
gravity increases the velocity during the interval of descent, and the acceleration is
represented by the increment of the parabola’s ordinate in that interval. If ¢ be the
accelerating force of gravity, or velocity bestowed on a falling body every unit of time,
the acceleration in each interval of descent, or infinitesimal division of the height AB, is
evidently gdt. If this constant increment of velocity should by any cause be reduced
in any given proportion, the aggregate effect must evidently be the same as if the
force of gravity ¢ were reduced in the same proportion. )

In such a vertical column of single molecules it is apparent that the equilibrium
acquirest a continually increasing velocity in the molecular motion from the summit to
the base ; and since the vis viva of a molecule is measured by the square of its velocity,
it is also obvious that the molecular vis vive increases in the simple proportion of the
distance from the summit. And knowing »* the amount of vis vive in the molecules at
the base, we also know the height of the column +?/2¢g, which is simply the height due
to the molecular velocity.

§ 31. In a medium the nature of the action that sustains the upper molecules must be
the same. The mean of the upper molecular impacts of a stratum must have less force

* [This section attempts to deal with one of the most difficult points in the theory., That the loss of
velocity suffered by every ascending molecule will lead to a smaller mean velocity above than below
seems, at first sight, inevitable. This consideration was urged by Gururis (¢ Nature,” vol. 8, p. 67,1873);
and, in his reply (p.85), MAXWELL narrates that a similar argument, which occurred to him in 1866,
nearly upset his belief in calculation. Warerston’s result really depends nupon an assumption that, at a
given height, the molecular velocities are all the same; whereas, according to the true Maxwellian law,
all velocities are to be found at all heights. The force of this consideration will be appreciated when it
is remembered that those molecules which at any time move at a low level with low velocities, would not

of themselves reach a high level at all.—R.]
1 [P requires.—R.]
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than the mean of the lower, the difference being the accelerating effect of gravity in the
breadth of the stratum. We have also to remember that the nature of the equi-
librium of a medium requires that if the velocities of all the molecules that pass a
horizontal or other plane in a given time are resolved perpendicular to that plane, the
sum of the squares of these resolved velocities are equal in opposite directions. In a
constant infinitesimal time the absolute acceleration of velocity is evidently greater
with the vertically moving molecules than with those moving obliquely to the vertical;
thus the aggregate effect of the accelerating force of gravity in increasing the molecular
velocity must be less than if it acted upon them directly as in the vertical column (§ 30).
The question is, how much less ? for in such proportion must we consider the force of
gravity to be reduced, supposing it to act uniformly on all the molecules of the atmo-
sphere.  The retardation of the ascending molecules of a stratum is equal to the
acceleration of the descending molecules. Let us consider the latter.

We assume from the original hypothesis that in any infinitesimal area the lines of
molecular motion lie equally in every direction, so that if supposed to issue from one
point S, they would be directed equally to every point of the surface of a sphere of
which 8 is the centre. Let SB represent one of these velocities and Bn the vertical

Fig. 2.

acceleration by gravity in the infinitesimal time d¢. With the radius SB describe a
hemisphere having its base on the horizontal plane PS. It is evident that the locus
of the point n is the surface of another hemisphere with its base at the distance of
Bn below the plane PS, and that the area of the space between the bases is equal to
the area between the surfaces of the hemispheres. Now, if gravity acted on each line
of molecular motion, instead of acting ouly in the vertical, the common increment of
velocity that would affect all is Bp = Bn = gdt ; and this, when Bn/BS is infinitesimal,
is equal to the quotient of the area between the concentric hemispheres gpf/T, PBAR,
by the surface of the inner hemisphere. But the actual increase of BS is
nr = nS — BS, and the mean increment is found by adding up all the particular
values of nr, and dividing the sum by the number of values, or, what amounts to the
same thing, taking the quotient of the area between the equal hemispheres PBAR,
enfb by the surface of one of them. Now the first is equal to the area between the
bases, which is equal to the product of a great circle by Bn, and the latter is well
known to be equal to two great circles; therefore the quotient is 1Bn. '
MDCCCXCIL—A., v F
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Thus, it seems to be clear that the molecules of a medium are collectively only half
as much affected by gravity as if they all moved in vertical lines; but it has been
shown (§ 30) that if they moved in vertical lines the height of the atmosphere would
be the height due to the molecular velocity; but as the increments of their velocity by
gravity is only one-half what they would receive if their motion were vertical, that
height must be computed as if the force of gravity were only one-half the actual
amount. Thus, if v* be the mean square velocity at a depth H below the summit of
the atmosphere, the height due to this with the full effect of gravity is ©*/2¢, and with
half effect it is ©%/g = H. Thus we arrive at the following deduction. The molecular
vis viva tnereases ssmply as the depth below the swmmat of the atmosphere, and the
height of the summat above any stratum is equal to the quotient of the mean square
molecular velocity at that point by the accelerating force of grawvity, or to double the
height that o free and wnresisted projectile would ascend of projected vertically with
an tnatial velocity equal to the square root of the mean square molecular velocity in the
stratum. . . .o . . . . . XVIL

§ 32. To asoerta,m the laW of denslty we have the equaﬁmon in § 17, modified as in
§ 27 to #A%? = gn, for the reasoms given in last section. By this we have
v*/g == 6n/A® = H, which applies to any part of the atmosphere at all heights.

. . . . 671 6dn 6m3dA dn .
Differentiating the equation N H, we have N A = dH. But A 18

Gsz _ %: y 31./3 H gd__A, therefore 07 _ 613dA

A.‘\ A’L
1H
= dH = 6dH — H ?ic—lé or %—Z;—l = J;{ ; and by integration we have A3 = H°

Thus we deduce that t]w density of the medium at any depth below the summat of an
atmosphere is proportional to the fifth power of that depth . . . . . . XVIIL

§ 33. As we had v* = H we may further deduce that v?A* = H?, or that the elastic
Jorce of the atmospheric medium at any point is proportional to the sixth power of the
depth of that point below the summit and to the sixth power of the mean square
moleculor velocity . . . : . . . . ... XIX

These deductions are all embraoed by the un&tIOl’]S v /q = H = 4% and
VA8 = T = %,

§ 84. To compare these results with what is known of the physical condition of
our atmosphere, we have first the obvious correspondence between the diminution of

evidently equal to dH, and —;

molecular vis viva and of temperature in ascending. No sufficient explanation of this
has, I helieve, been yet offered, for it is needless to attempt to do so by supposing the
specific heat of air to increase as its density diminishes, as no difference of specific heat
disturbs the equilibrium of the temperature of bodies placed in horizontal contact.
The very fact of a gaseous atmosphere presenting a constant inequality of temperature
at different elevations seems to prove that the law of the vertical equilibrium of tem-
perature is essentially different from the law of horizontal equilibrium.
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The actual rate of diminution is very fluctuating and uncertain, varying from 200
to 500 feet for each degree. The formula of our hypothesis applies only to the con-
dition of an atmosphere resting on a horizontal base ; such, indeed, as may be found
only during a balloon ascent.

M. Gay-Lussac, in his celebrated ascent from the neighbourhood of Paris, found
the depression amount to 724° Fahr. in 7634 yards. This corresponds to 316 feet of
elevation to 1° if the rate is uniform. We have already determined (§ 27) the valus
of » in air at the temperature of melting ice to be 2244 feet per second; hence
v?fg = 156,593 feet = H, the height of the atmosphere at this temperature (being
nearly 80 miles). Now, taking RUDBERG’S expansion of dry air, the value of 2? in
degrees of Fahr. is 493° at this temperature, and 138523 = 3176, which is the
elevation that ought to correspond to 1° by the hypothesis, in which also the rate is
uniform. If Davron and Gay-Lussac’s constant of expansion is preferred, the eleva-
tion for 1°is 328 feet.

The hypothesis requires that the diminution of temperature should be uniform, and
the best authorities agree that it approximates to uniformity at considerable eleva-
tions. In M. GAy-Lussac’s table of observations taken during his ascent, the indi-
cations of the thermometer are somewhat irregular, as might be expected from the
manner of making the observations, and the formula (LarrLAcr’s) employed to
compute the elevations may not, perhaps, answer so well for balloon ascents as it has
been found to do in mountainous elevations. We have also to keep in view that the
atmosphere absorbs a large proportion of the Sun’s rays in their passage through,
besides being supplied with heat from the ground irregularly according to the
varying characteristics of its surface. Taking all these circumstances into account,
the accordance between theory and M. Gav-Lussac’s extreme observations is nearver
than might be expected, and probably will not be found so exact at lesser elevations.

But the hypothesis admits of being tested without employing any empirical
barometric formula, because, if it is correct, the tension as shown by the column of
mercury ought to vary as the sixth power of the absolute temperature (from zero at
— 461° Fahr.) (XIX). But the observations must be taken at stationary points
during the ascent, so that time may be allowed for the thermometer to acquire the
temperature of the stratum of air in which the balloon rests, Let 2° be the absolute
temperature of Fahr. zero; then for any two observations we ought to have
<§—%I;—:)6 = %; in which £, ¢;, are the temperature and tension at any one altitude
and #y, e,, the same at any other. The value of z eliminated from this equation ought
to be 448 or 461. I have tried this with M. GAv-Lussac’s sixteenth and last
observations, which appear to be the most favourable for accuracy, and z comes out
equal to 467. The rate of diminution also in the interval of 1800 metres between
these two observations agrees well with theory, being 310 feet for each degree Fahr.*

# Note H (Formula for measuring heights by thermometer).

2
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§ 35. We must now endeavour to show that an atmosphere of mixed media follows
exactly the same law of equilibrium.

Atmospheres of different homogeneous media supposed. separate from each other
must evidently have the same height if the mean square molecular velocity at the
base of each of them is the same, and, consequently, the molecular vis viva in each
atmosphere will, at the same height, be proportional to the specific molecular weight of
the medium. If, on the contrary, the molecular vis vive at the base of each is the
same, then will the height which is proportional to the mean square molecular
velocity follow the inverse ratio of the specific molecular weight, which is also equal
to the direct ratio of the mean square molecular velocity (VIL). Thus, a hydrogen
atmosphere ought to be four times the height of an oxygen atmosphere, &e. When
mixed, the molesules of each of the media at the same height are necessarily in
equilibrium of vis vive, and the mean space occupied by each molecule is therefore the
same (§ VIIL). To see distinctly that the condition of the mixture is exactly that of
a homogeneous medium of equal specific gravity, or, what is the same, whose specific
molecular weight is equal to the sum of the products of the specific molecular weight
of each by its proportionate volume—and thus having in equal volumes the same
amount of vis viva as the mixture—we have only to recollect that a constant
increment of descent in the atmosphere corresponds in all parts of it to the same
constant increment of mean square molecular velocity, whatever the molecular velocity
may be, or whatever the weight of the molecules with which it is associated, and the
increment of vis vwe in each medium for the same constant increment of mean
square molecular velocity is as the product of its specific weight by its constituent
volume. But the increment of mean square molecular velocity in the homogeneous
being the same as in each of the constituents of the heterogeneous medium, and the
product of its specific weight by its constituent volume being equal to the sum of the
products of the specific weight and constituent volume of each, it is obvious that for
the same increment of descent through the atmosphere the increment of vis viva in
the homogeneous is the same as in the mixed medium, and that generaﬂy the
physical condition of an atmosphere consisting of various media mixed together is
exactly the same as if it were composed of one homogeneous medium whose specific
gravity is equal to that of the mixture. '

If each constituent of an atmosphere were supposed to form an atmosphere by
itself, and ranged by each other side to side, and having all the same height, the
ratio of their densities or proportional number of molecules in a constant volume
would be the same at all heights, but the molecular vis vive would be respectively as
the specific weight of each. If in this condition they were brought together so that
all might occupy the space of one, an immediate change in the molecular vis vive of
each medium would ensue, the heavy molecules losing and the light molecules gaining
vis viva until the vis vive equilibrium is established ; and this, as well as their
united density, corresponds with the same qualities of the homogeneous medium at
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the same height. All this is an obvious corollary of what precedes. The vertical
condition of equilibriwm of an atmosphere is the saome whether that atmosphere consists
of one homogencous medium or of & mixture of different media having the same specific
grovity . . . . . . oo e .. XX

§ 36. The relation between the total height of an atmosphere of the medium to the
height due to the molecular square velocity (XVIL.) enables us easily to estimate the
effect of diminished gravity, and assign the limits of temperature at the base, beyond
which an atmosphere cannot be retained.

If the force of gravity is constant, it has been shown that the height of the
atmosphere is equal to the height a body would ascend with the molecular velocity,
and supposed to be acted upon by half the force of gravity; but as it really

. e . . R 2. . . . .
diminishes as we ascend, according to the ratio <~R—~:ﬁ> (in which R is the radius of

the planet and H the height above its surface), the true height must be computed

2
with the variable half-force g (I;-l_—?_»—ﬁ> , instead of with the constant half-force g

Let v be the initial velocity of the vertical projectile at the surface of the planet, w

its velocity at the height % ; then shall [;g = dt, and dt ¢ ( & )2 = — dw = the

2\R+H
retardation in the differential time. Substituting the value of d¢, the differential of
dh g

the time in this equation, we have — dw = o <§“—{_~7L> , and multiplying by 2w we

2 \? - . . . .
have — 2w dw = — dw? = dhyg . <ﬁ> Integrating this expression gives

¥ — w? = Ry (1 so that when w? = 0, we have by eliminating % (which

- fﬁf—h>’
then represents the total height of the atmosphere) 7 = % ; being its value in
terms of the radius of the planet, of the mean square molecular velocity at its
surface, and of ‘the force of gravity at its surface. In the former expression for H,
where the force of gravity was supposed constant, we had H = +*/y, or v* = gH.
Substituting this value of v* in the equation for A, we have A = ——Eﬁ— =H <1. + % ) ,
- :
if H?/R is infinitesimal in respect to unity. '

Thus the correction to be applied for the diminishing power of gravity in ascending
increases as the square of the height, and employing the preceding data, the total
height of the earth’s equilibrated dry atmosphere, considered as a medium at the
temperature of melting ice, is by this theory 157,776 feet, being 1183 feet more than
the last determination, with constant force of gravity; and the correction to be
added to the height computed with constant force of gravity is in feet 1'2 X H?, the
square of the height in miles.

§ 37. We may express the last equation in a more general form with the molecular
vs vive as the constant instead of the mean square molecular velocity. If the
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specific weight of the medium that corresponds with air is taken as unity, and
1 X 9% is the value of the molecular vis viva at the surface of the planet: with any
other medium whose specific weight is s, its mean square molecular velocity with
the same wvis wvive is v%s, (VII); and the absolute height of its atmosphere is
Ro?

T Rgs — ¥
variety of condition, and determines the limit of vis vive at the surface of a planet
beyond which the medium cannot be retained, for when % is infinite we have
Rgs — v* = 0 or v*/s= Rg. With regard to the medium that represents the atmo-
sphere of our planet, we have already determined the value of »* to be (2244)%, when
the absolute temperature is 493°and s = 1; consequently, when v?/s = Ry, the surface

This equation gives the absolute height of an atmosphere under every

temperature must be 65,760° Fahr. for air, and 4556° for a hydrogen atmosphere
whose specific weight s is t4%33. At these surface temperatures such atmospheres
would slowly evaporate into space.™

At the surface of the Moon the limit of temperature for an atmosphere of air is
3008° absolute or 2505° on Fahr. scale. For a hydrogen atmosphere it is 208°
absolute or — 253° Fahr. But the proximity of the Earth reduces these limits
respectively 100° and 7°, so that if the Moon’s surface had even a higher temperature
than 2405° the Farth, according to this theory, would then gradually withdraw the
whole of any atmosphere of air that it might then have possessed.

By employing the same equation, it appears that the temperature at the surface of
a body like the Sun in magnitude and mass requires to be 13,400° to sustain an
atmosphere identical in constitution and height to that of the Harth.t

§ 88. It will not fail to be remarked that the positive evidence in favour of the
reasoning of this section turns on one point. Does the law of vertical equilibrium of
temperature correspond with the law of vertical equilibrium of vis viva? We have
seen that the correspondence is more exact than might be expected, although it is
extremely difficult to put the question to the test of direct experiment. In a column
of air 818 feet high the temperature at the bottom ought to be 1° higher than at the
top in any state of the atmosphere. If air is made to circulate quickly in two tubes
of this height lined with non-conducting material, the difference of temperature ought
to be very distinctly shown by thermometers at the top and bottom. The quick
motion of the air downwards and upwards may be expected to compensate for the
disturbing effect of the sides of the tube, and even to cause their internal surface to
assume the proper atmospherical gradient of temperature.

The accuracy of the formula for measuring heights by the barometer that may be
derived from the deductions of this section depends on the integrity of the law of
diminution of temperature, but as this varies from local causes, the theoretical rule
does not seem to apply so well as those in common use, which are partly empirical.

# Note K (central heat).
+ Note Li (nebular hypothesis).
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But a strictly theoretical formula may be deduced if it is permitted to assume that
the change of temperature between two stations is uniform, whatever that difference
may amount to, and likewise that the change of density is conformable.®

SzcrioNn VI.—ON THE VELOCITY WITH WHICH IMPULSES ARE TRANSMITTED
THROUGH A Mgeprum.t

§ 39. The reasoning on the subject of this section is founded on the principle that
the velocity must correspond with the average velocity resolved through the medium
in any one direction.

We have seen in § 17 that the mean square velocity resolved in one direction is
equal to one-third of that mean square velocity, and it is easy to prove, if all the
velocities of the molecules are equal, that the average resolved velocity in one direc-
tion is equal to one-half the common velocity.

As the equal lines representing the molecular velocities on one side of a plane may
be assumed to radiate equally in every direction from one point, they will spread to
every point of the hemisphere, resting on the plane; let perpendiculars be dropped
from these points upon the plane. The quotient of the sum of these divided by their
number 1s equal to half the common length of the equal lines. The proof of this is
derived from the integration of simple circular functions that give the quotient of the
sum of the sines of a hemisphere divided by their number, or by the surface of the
hemisphere, equal to half the radius. Thus, if 6 be the inclination of the radiating
lines to the plane, » d@ sin 0 cos 27 represents the aggregate of the perpendiculars
upon the base of the hemisphere, and d@ cos 8 27 represents their aggregate number.
Collecting the quotients of the first by the second for every value of @ from 0° to 90°,
or what is the same, integrating these functions, and dividing the first by the second,
we have the quotient equal to 5v, which is the mean velocity resolved perpendicular to
the stratum when the molecular velocity v is constant.

§ 40. But the hypothesis does not admit of the molecules having all the same

% Note M (barometric formula).

+ [The idea of the direct connection between the velocity of sound and that of the molecules is of great
interest, and leads at once to the conclusion that the velocity of sound is independent of density, but
proportional to absolute temperature. The next person to raise the question was Sterax (‘ Poce. Ann.,
vol. 118, 1863, p. 494), but his calculation is as defective as that of the author. On WATERSTON’S prin-
ciples, the ratio of the velocity of sound to the molecular velocity of mean square should be +/5/3, as
was shown by MaxwsLL (Presrtow, ¢ Phil. Mag.,” vol. 3, 1877, p. 453). In the ¢ Philosophical Magazine’
for 1858 (vol. 16, p. 481) WarersToN returned to the subject. It is curious that he regarded the ordi-
nary hydrodynamical investigation, not merely as needlessly indirect, but as inconsistent with the
molecular theory. A result in harmony with experiment cannot be obtained on the basis of a
hypothetical medium constituted of elastic spheres, for such a medium would have a ratio of specific
heats different from. that observed in gases.—R.]
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velocities ; we have therefore to enquire into the effects of this diversity upon the
velocity of transmission.

The molecules in a small sphere of the medium at any given instant may he classed
in respect to their velocity into sets, and of each set we are allowed, by the hypothesis
which we are following, to assume that there is an equal number moving in every
direction, and that since continuous uniformity in the density requires that the
number contained in the spherical space should be always the same, the exit of one
of a set may be conceived to be immediately followed by the entrance of another of
the same moving in the same direction and with the same velocity. One-half the
number in a set is increasing their distance from a given plane, and the other half
diminishing their distance. Let the motions of one of these halves be resolved in the
direction perpendicular to this plane, and let us add together such resolved spaces as
are described by all the molecules of the set that happen to be in the sphere during a
constant time for so long as they remain in it, and divide by the constant number of
molecules of the set in the sphere at all times; the quotient must evidently be the
mean velocity in that direction and set, and must be the uniform rate with which an
impulse is conveyed in one direction by means of an infinite series of impacts, the
space between two impacts measured in the constant direction being the step forward
made by the infinitesimal portion of the impulse contained in the traversing motion of
the molecule from one of the impacts to the other.

The number moving in any one direction with the velocity » is equal to the
number moving in any other direction with the same velocity, and each of these
numbers takes the same time to traverse the sphere. If we compare this time with
that taken by the molecules of another velocity or set, it is obvious that these times
must be inversely as the velocities, and the number that continuously pass through the
sphere or any other constant space in a constant time must be as the velocity : for this
may be estimated as if there were continuous currents of molecules moving in every
possible direction with the respective velocities ; the encounters that may be imagined
to interrupt this continuity being infinite in number do not alter the general average
of velocity or direction or proportionate number, and therefore each velocity and
direction may be taken as constant. Now, for any one velocity « viewed thus as
constant, the mean resolved velocity in one direction of all the molecules that happen
to move with this velocity at any instant is, as above demonstrated, equal to 4u;
but if we add up the resolved spaces traversed by all the molecules that have been in
the sphere with this velocity during a constant time, and divide by the constant number
that are in the sphere at any instant, we require to multiply $u by a factor that is
proportional to u, so that u? the resulting product, is proportional to the mean
distance traversed in a constant time by the molecules that have appeared in a
constant space to move with this velocity during the constant time.

Now, suppose an impulse to be given to the medium at any point, and an
indefinitely long cylinder of the medium to extend from this point; the impulse
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given to the molecules at its extremity can be conveyed through the medium only by
means of the molecular encounters, each of which contributes to this effect with
different velocities resolved in the direction of the cylinder. It has been shown that
‘the mean traversed distance in a given space dui:'ing a given time due to any one
molecular velocity is as the square of that velocity multiplied by the proportion of
the number of molecules associated with it. Therefore, the united effect of all
velocities must be equal to the sum of these products, and this sum is unity, or the
whole medium multiplied by the mean square molecular velocity. But it was shown
that if the molecular velocity were constant and equal to », the absolute value of the
mean resolved velocity, or traversed distance, during a constant time in one direction,
would be Lv. Now, as the traversed distance or transmitting effect of this velocity
in comparison to the other velocities u, &e., as they actually exist in the medium, is
as v* to u?, &ec., we arrive at the conclusion that Lo is actually the uniform velocity with
which an impulse is transmitted through a medium.

§ 41. According to the reasoning in §§ 27 and 28, the value of v is the velocity
acquired in falling through three uniform atmospheres. This gives §v = 1122 feet per
second at the temperature of melting ice, and 1176 at the temperature of 80°, being
an increase of §th of a foot for each degree. In the article, “Acoustics,” ¢ Penny
Cycl.,” it is stated that 1125 feet per second at 62° accords nearly with the mean of
the best experiments, and that the difference for 1°is $ths of a foot. The velocity
by the hypothesis is therefore about 4% part greater than is found by observation,
which, in a distance of 8 miles, amounts to a difference of one second in the time of
travelling that distance. This is probably a greater difference than can be allowed
between observation and a correct theory. M. MoLL’s observations, which seem to
be standard authority, were taken with such precautions that an error of 1 in
40 seconds can hardly be admitted. They likewise agree remarkably well with
Mr. GoLpiNgHAM’S observations at Madras.

In taking astronomical observations of the same kind with the same instrument,
it has lately been discovered that two individuals differ sensibly from each other.
This has led to the suspicion that in all observations there is a personal error due to
some obscure physiological cause that allows a small interval of time between
sensation and perception, or volition. If this were the same for the sense of hearing
as for vision, it could not affect the results of experiments on sound ; but it is quite
possible that it may be different, and the very fact that such personal errors do
exist, may justify a suspicion that such an effect might interfere and prevent a
perfect degree of accuracy from being obtained.

We have made no hypothesis of the nature of the impinging surfaces of the
molecules. May the discrepancy arise from something omitted in this?

In other media, according to this theory, the velocity varies as the inverse square
root of their specific gravity, and at different temperatures as the square root of the
absolute temperatures. It depends wholly on the thermometer, and is quite inde-

MDCCCXCIT.—A. G
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pendent of the indications of the barometer. This accords with the generally
received theory. The molecular velocity of watery vapour being to that of air as
V144 to 4/9, the moisture in the atmosphere ought to have the effect of accelerating
the velocity about 4 feet per second in temperate latitudes and 10 feet in the tropics
at a maximum,.

NoOTES.
Note A.—Motion Indestructible as Matter.

The force of the descending weight is apparently expended, but it is only trans-
Jerred to the medium. If the elements of matter are perfectly elastic, this kind of
transference must be of general occurrence wherever force is exerted, because the
exertion of force is then but its transference cither from its invisible constant
condition, as in the medium, to its visible transitory condition, as in the ascent of the
weight, or vice versd, In the former case force exists in the matter of the medium
without change ; in the latter it is being transferred to the agent of gravitation, so to
speak, and apparently released and disconnected from matter. The force of a medium,
when it equilibrates a force of gravity, is similar to the force of a wind or a current of
water on a stationary surface. Is it not possible to view all forces as inseparable
from some form of matter, and all the phenomena of nature, as not consisting of the
creation and annihilation of force, but in its transference from one form of matter to
the other ?

Note B.—Vapours,
This enables us conveniently to represent the relation between the density and the

square root of the mean square molecular velocity of a medium while it is being
dilated or compressed.

Fig. 3.
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Take Q as the origin of co-ordinates, and let QP represent v aﬁd PN the /\/ i
Join NQ. If the medium is compressed so that f\/ % becomes TS, then shall v
become QT, and if it dilates so that /\/’ % becomes UW, then shall v become QU.
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Fach point in the positive quarter of the co-ordinate axes represents a medium of
a given density and temperature or wis viva; the sixth power of the ordinate
represents its density, and the square of its abscissa y its vis viva.  Thus, a%? = e is
the expression for the tension or elastic force of a medium whose point on this chart
(as it may be called) is defined in position by the co-ordinates =, 7.

If e is supposed constant, x, y to vary, their locus traces out a hyperbolic curve
(such as NR) whose equation is 2%° = e. It is a curve of constant pressure, of which
kind is STPC for one atmogphere drawn on the accompanying large chart of vapours
(Plate 1). The sine of the inclination of its tangent to the axis of y is § z/y. Any gas
expanding or contracting under a constant pressure traces out a curve of this kind
with its varying density and wvis viva.

It is remarkable that if the points corresponding to the density and wvis viva of a
vapour in contact with its generating liquid are laid down on this chart (fig. 8), they
range themselves in a straight line, such as TR, that issues from some point advanced
on the axis QC. As this fact applies to all vapours that have been experimented
upon, it seems to point to the true physical law of their equilibrium with the liquid.
On the accompanying chart of vapours I have projected the points of several sets of
experiments. It may be viewed as a portion of the fig. 8 enlarged, the point Q,
or origin of co-ordinates, being about 40 inches to the left of the outer margin.

The following details will be sufficient, with the chart, to enable any one to satisfy
himself of the truth, and, if he pleases, to construct the formula of any new vapour by
means of fwo simple experiments on its tension.

In vapours, as well as gases, the pressure or tension being equal to the product of
the absolute temperature or (¢ 4 461) by the density, to find the latter we have only
to divide the tabular tension (in inches of mercury) opposite ¢° Fahr. scale by the
former. The sixth root of the quotient is the value of x, and the square root of
(¢ + 461) is the corresponding value of y. In the accompauying chart I have
projected several sets of tables of pressures in this way. The unit value of @ is
1 104/10 inches long, and the unit value of g, or square root of absolute temperature,
is Y’ths of an inch in length. '

It will be remarked how nearly the experiments of SourHrrN and the French
Academy on steam range themselves in one line. To observe this more distinctly I
have drawn the straight line SF through SouTHERN’S pressure at 212° and the
French Academy’s observation at 429°4. The divergence at the four lowermost
experiments of SOUTHERN is more apparent than real, the greatest difference being
equivalent to only 185ths of an inch of mercury.

The general equation for a straight line TR (fig. 3) is @ = (y — &) tan H, in which
G = QT and H = RTC. Each vapour being represented by such a line with two
constants G and H, to find these constants, which may be done by two experiments
on any one vapour, let e, be the tension at ¢, temperature Fahr., and e, the
tension at f, temperature; then since %,>= 461 + ¢, and 9,0, = ¢,, we have

G 2
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€Ly = <%2> =1y, — G tan H, or tan I = 161+ 4, X TR~ G and by 2nd
1

experiment  tan H = /\6/ 9 X -y From these we eliminate®
P 461 + &, /461 4+ — G

o JI61 + 4, _ o

161 + 40 DTN e L IR L
G _\/461 + ¢ 161 & Z_Li‘% 461 4 1,
461 + 4, o .
461 + 4, 7 ¢,

From the two observations corresponding to the points S and F, I have computed
the value of G = 19°4923 and tan H = 0'092308, which define the equation for the
steam line that best answers to the experiments of SourmerN and the French
putting cot H as the common denominator we have the following formula for the
tension of steam at all temperatures :—

. {\/4751 + ¢ — 194923

6 .
10853 } (461 4 ¢) = e (in inches of mercury).

It is singular that the points of projection belonging to each of the many sets of
experiments on steam range themselves in a line, but these lines do not coincide,
except in the case of SournErN and the French Academy. Kach set is thus con-
sistent with the general law, and on this account their want of accordance with each
other is difficult to explain. It might be caused by an error of the standard scales,
but this is hardly possible ; or impurity of the water, which is not very likely where
every precaution has been so carefully attended to. Dr. Ur's line of observations
is more inclined to the axis than SF, the cot II in the formula being 10°3 and G = 19-8.
The line of the American Institute’s experiments has yet a greater elevation, the
cot H being about 9-8.

The other lines of vapour on the chart explain themselves. It will be remarked
that the deflections from the straight are all of a zig-zag character, there is no general
bending to one side or another, and this seems to show that there is some physical
law upon which the equilibrium of vapours with their liquids is arranged that is
represented by the above function of the temperature. As it seems to apply to all
vapours, it is probably not beyond the grasp of physical research, if the wvis viva
theory is admitted, for it evidently does not depend on the chemical qualities of
the body any more than does the law of volumes in gases.

1t must be confessed that as yet we have but few materials wherewith to found a
process of investigation. The fundamental point is the specific heat of steam.

* [? determine. —R.]

+ If DavroNy and Gav-Liussac’s constant of expansion is preferred, 448 is to be substituted in the place
of 461.
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If it is more than about one-third that of water, if for equal volumes it is not the
same as that of air and the other gases, then is the theory incomplete and altogether
defective.

It is stated to be about 0'84, but this requires confirmation. The specific heat of
the vapour of alcohol ought to be only §th that of the liquid. The vapour of ether
only +th that of the liquid. Vapour of etherine 1th. Vapour of sulphuret of carbon
1th.  Vapour of oil of turpentine {}yth. Vapour of bromine 1th, &c.

These are from MM. pE LA Rive and MARCET’S experiments.

Is there any direct evidence in favour of or against this view? So far as T can
discover, little, if any, on either side. It is quite undetermined as yet by experiment,
and is so surrounded by practical difficulties that it will probably long remain so.

But analogy favours it in so many ways as to make it highly probable. Liquid
etherine has four times the specific heat that its vapour ought to have, judging from
its specific gravity. Now, olefiant gas is isomeric with etherine, and its specific
gravity is one-half that of etherine vapour. It can hardly be doubted that the
specific heat of liquefied olefiant gas for equal weights is the same as that of etherine,
which corresponds very nearly with naphtha, turpentine, and the other hydrocarburets.
If it is so it will be double what it ought to be, if for equal volumes it is the same as
that of air and the other gases. Now, the eminent French chemists who have at
different times made experiments on the specific heat of this gas agree that it is
nearly 15 times that of air, while Mr. Haverarr (‘ Edin. Trans.’), on the other hand,
with his simple and apparently most efficient apparatus, found it to be the same as
that of air, and accounts for the higher number of the French chemists by the great
difficulty there is in freeing it from ethereal vapours.

Tt is the same with carbonic acid gas (the only other exception to the law of equal
specific heat for equal volumes). The French chemists agree that its specific heat lies
between 1175 and 1258 ; Mr. HAYCRA¥T, by many experiments, that if carefully
dried, it offers no exception to the general law. Judging from the analogy of other
similar binary compounds, there cannot be a doubt that the specific heat of liquefied
carbonic acid is double, if not three times, that of the gas.

It would be a most valuable addition to our knowledge if this great change in the
specific heat of a body when it becomes vapour could be thoroughly established, and it
is in vain to proceed with the subject of vapours until it is so.

Sulphuric ether is probably better adapted for the experiment than any other body.
Its boiling temperature is very low, and there is a vast disproportion between the
specific heat of the liquid and what may be expected in the vapour. Suppose a volume
of it and of air are maintained in equilibrium of pressure and temperature by means
of a bent tube with mercury. If a sudden small and equal dilatation is made in both
at the same instant, the difference of pressure that will then become apparent will
indicate the value of the latent heat of the vapour in terms of its specific heat, and,
as we know the value of the same in terms of the specific heat of water, we shall have
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the ratio of the specific heat of the vapour to that of water. The air follows the line
RQ (fig. 3) in its expansion, while the vapour is obliged to keep to its line RT.

The latent heat of vapours is another subject where there is room for much
additional research. Dr. URE, in his ¢ Dictionary of Chemistry,” has given a table of
eight vapours, but none of the liquids appear to have been pure. The ether boiled at
112° and the specific gravity of the alcohol was 0-825. 1f a correction is made for
this want of purity, it is singular that the latent heat of each is almost exactly in the
inverse ratio of the specific weight of its vapour. This may indicate that the heat
required to vaporize a molecule of each of these bodies is the same, and amounts to
3000°, referred to the constant specific heat of a gaseous molecule, which is the proper
theoretical standard.

I's this the measure of the force of liquid cohesion? On the wis viva theory of heat
this, for 1 1b. of water, amounts to the force required to raise 1 1b. to the height of
about 680,000 feet. According to MirscnerLicH, the vis viva generated by the union
of the constituent elements of the same quantity of water amounts to ten times this
force.

Considerable attention has lately been given to thermo-chemistry ; but it is to
be regretted that no mnotice has been taken of the permanent change of specific
gravity that is usually found to ensue in chemical mixtures that evolve heat. Tt
would be interesting to ascertain if there is any harmonious connection between the
quantity of heat evolved and the change of atomic volume. Dr. Ure has given a
curious example of hydrated nitric acid, where the permanent change of volume
appears to be the same as would be caused by a permanent change of temperature
equal to the heat evolved.

Since only two experiments are required to fix a line of vapour on the chart, it
would not be a very arduous undertaking to accomplish this for all bodies that throw
off vapours at accessible temperatures. We might then have the means of answering
the various questions that cannot fail to suggest themselves on looking at the chart;
and, first of all, do the vapours of arsenic, iodine, camphor, salts of ammonia, and the
other solids that rise into vapour before becoming liquid, follow the general law ?
This question hag yet to be determined.

How are the lines of vapour of the simple bodies related to each other ? We have
only one example as yet, viz., the vapour of mercury by M. Avocapro. It will
be remarked that the line drawn through MR, the third and the second last obser- .
vation, agrees very well with the position of the other points. This line produced
meets the axis at 50°, which is certainly lower than the temperature assigned by
Dr. Farapay’s delicate experiment as the point of no vapour. In judging of this
discrepancy, however, we must recollect that the deusity is represented not by the
ordinate to the line of vapour, but to its sixth power; hence, at the temperature
of 75° the density indicated by the line on the chart is only tog550500th of the
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density of an atmosphere. The formula that corresponds to this line has the constant
G = 226065 and cot H = 20-0023.

It will be remarked that the line for DarroN’s ether (which, from its low
boiling point, must have been nearly pure), THoMPsSON’s pyroxilic spirit, and the well
determined line for steam, are nearly parallel ; is this parallelism perfect ¢ It is also
remarkable that the projection of two experiments by DArLToN on aqueous ammonia is
exactly parallel with the steam line, and further, that the same parallelism is
maintained by the vapours of liquefied ammoniacal gas and carbonic acid (by
TaILoriER). It would be extremely desirable if Dr. FARADAY'S experiments on
chlorine and the other more condensible gases could be repeated on a large scale so as
to determine their position on the chart, and by two or three observations on each to
eliminate the constants G and H. It is by such experiments and those of
M. Cacniarp pr LA Tour, made at the other extremity of the scale of heat and
pressure, and likewise by Mr. Perkins, all of which may be classed under the head of
chemical physics, that we may expect to extort from nature some of her most hidden
secrets, to come in sight of new continents in the world of natural science, not dreamt
of in our philosophy, because removed beyond the bounds of suggestive analogy.
Such pressures appear to us great, and are certainly dangerous to operate with, but in
respect to those which exist in nature, and that everywhere surround us, restrained by
internal forces, they can only be considered as infinitesimal.

Note C.—Temperature of Compressed Aur.

These changes of temperature are certainly much greater than are said to have
been observed by DarwiN, Darron, and others. Not having access to the original
account of these experiments, I am unable to ascertain how far they accord with the
theory ; but the specific heat of air is so small in comparison to that of the materials
of which thermometers are composed that the actual difference of temperature in
a single condensation or dilatation must be much greater than what is indicated by
any thermometric apparatus.

A more effectual way of ascertaining this seems to be by continually and quickly
repeating the same condensation with different portions of air, so that after some time,
by proper care, the condensing syringe ought to exhibit the temperature of the air at
its maximum tension.

If air is a medium we have in XVI. the means of computing the temperature that
ought to be shown by a thermometer placed at the bottom of the syringe.

Thus, %, e, being the temperature and tension of the air outside, e, the tension

. . . . e __ [to + 461\*
corresponding to the load on the eduction valve of the syringe; then "= ( bt 461)

and <t0 + 461> «4/ 61 ~— 461 = ¢, the temperature of the air when condensed.

)
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The air -eﬂgines of the atmospheric railway may perhaps afford the means of testing
this equation.

Note D.—To find the Compression that Corresponds to a Gwen Ratio of Latent to
Sensible Heat.

This may be computed by means of IV. and XVIL.
Suppose the medium is compressed so that the mean molecular distance changes
1 . .
from 1 to —— 2 1> th wis vwe increases from 1 to —; (XVI.), the increment being
1/ =
By Wlthdrawmg moleculm vs vwa under a constant pressure, let the mean

distance change from 1 to j‘i ; the molecular vis viva must be diminished from 1 to

<x i 1> (IV.), the decrement being —vs- ~~~~~ = K. The ratio K/L is given to find

1 . . . . .
<%%~> , which is the amount of compression from unity that makes the ratio

between the sensible and latent, or evolved vis viva, equal to K/L.

If we put /(x4 1) = v, the equation resolves itself into v* + 4* +y =K/L=$§
in the case given. This equation may easily be solved by inspection of a table of square
and cube numbers. 1/y® is the compression from unity to give the ratio K/L of the
sensible to the latent heat.

Note E.—Specific Heat of Air.

It is probable that the specific heat of mercury and water are better determined
than that of any other bodies. Assuming that the specific heat of liquid mercury
(0-033) is the same as that of its vapour, and that all gases and vapours have for the
same volume the same specific heat when wn equilibrio of pressure and temperature,
the specific heat of air in terms of that of water is 0'238. The mean experimental
value is, according to the French chemists, 0°267. Mercury is thus the only liquid,
so far as is known, whose specific heat is the same as what it ought to be in the state
of vapour, if it conforms to the general law. Water is nearly three times greater
than steam ought to be. Alcohol five times that of its vapour. Ether seven times,
&e. ; see Note B. ‘

This accordance of the specific heat of mercury with its vapour seems to prove that
there is little or no part of the heat required to raise the temperature of the liquid
absorbed in a latent form. This is an important point in the vis viva theory.

It is remarkable that there is no iustance, so far as yet known, of mercury
combining in fractional parts of a volume. Arsenie, sulphur, phosphorus, and some
others combine in fractional volumes, and their specific heat in the form of vapour by
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the theory of gases is the same fractional part of the specific heat of the solid. This
is somewhat confirmatory of the theoretical interpretation of the law of volumes
(§ 15). The vaporous molecule of mercury is indivisible. The vaporous molecule
of argenic is divisible into four parts: of sulphur into six parts; of phosphorus into
four parts ; of hydrogen into two parts; of oxygen into two parts; of water (O,2H,)
into three parts; of alcohol (2(HC,) 4+ 2H,0,) into five parts; of sulphuric ether
(4(HC,) 4+ 2H,0,) into seven parts; sulphuric acid, anhydrous (80, 4 8,) into four
parts; etherine 4(HC,) into four parts, &c. We may thus predict the specific heat of
pyroxilic spirit to he 0-83, and of pyroxilic ether 072.

Note F.~-M. CLAPEYRON'S Fundamental Position.

The density and tension of a medium expanding according to MARRIOTTE'S law, are
represented linearly by the co-ordinates to the common hyperbola CMEL referred to
its asymptote AG ; the abscissa AB, &c., representing the volume, and the ordirates
BC, &c., the tension.

We have shown that each incremental expansion is made at the expense of the
molecular vis viva of the medium, so that to maintain the expansion, according to
MARRIOTTE'S law, the loss of vis viva must be continually made up ; and the amount
required to be supplied for any given expansion, as from B to D, is to the constant

Fig. 4
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original amount as the area CEDB is to 3 CB.AB, or to the original tension CB
acting through three times the original volume AB (XIIL).
Suppose the medium to expand from B to H (against pressure) without having its

loss of wis wiva supplied ; then, according to § 22, its tension from CB, or unity,

ABY . .. . .
becomes KH = <—E> CB. Assuming the original volume and tension as unity and

AH
1 \4 1 \¢ . .
BH =y, we have KH =2 = <1 n g/) and z dy = dy <m> = the differential of

the asymptotal area CKIB.

-3
3

. . 1 . .. . 3dA .
To integrate this put ;=1 4y, and differentiating gives dy = — ~-; and since

MDCCCXCIL—-A. H
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€ = (~——~1 > = A% we have fw dy =3 —3A =3 — ,=area CKHB in
L+y 7 1 +yy

terms of ABCN unity. In this, ¥ being made infinite, we have the area of the whole
asymptotal space = 3ABCN, which accords with § 19, as the asymptotal area repre-
sents the collective force of expansion from the original volume to infinity.

If, during the expansion from B to H, wis viva were supplied to the medium so as to

.. . . . . . 1A
maintain the original quantity unimpaired, the point K in the hyperbola @ = <'I‘>4“—»y>
would coincide with M, the point in the common hyperbola x = iy ™ MH

AB T, (NS U N T
= —A—ﬁ.CB. Now, it is evident that MH : KH : : iy (L " g/) R Tr
but the preceding integral gave —2 . = 3ABCN — CKHB, therefore

¢+
MH : KH :: 3AB.CB : 3AB.CB — CKHB = ratio of original wvis wviva of the
medium to the force remaining after expansion from B to H. Thus, MH : MK : :
original vis wiva : decrement of vis viva owing to expansion; and three times the
area KNAS is equal to the asymptotal area on the other side of KH. These
relations evidently hold good in whatever part of the conic hyperbola the point C
may be taken.

Suppose the medium is maintained at its original vis vive while it expands from
C to E, it will exert the mechanical force CEDB = p, and absorb the wis viva
CEDB, the original quantity in the medium being 3AB.CB. From E let it expand to
F without being supplied with vis vive; then, as before, FG = (—%—](j)ED and %}é is
the proportion of original wis viva expended represented by EFGD = (m), its
equivalent mechanical force exerted. Let it now be compressed from F to K, the wis
vive, communicated to the medium being continually withdrawn., The amount
withdrawn and the force exerted is represented by the area FGHK = ¢. From K
let the medium be compressed without withdrawing the wvis viva generated until the
original tension CB and density AB are regained. The force of compression and
vis vive communicated to the medium in the last operation is represented by the area
CKHB =n. For shortness put the area KQDH = s, CEFK = §, and EQF = e It
is evident since the molecular vis viva through CEL is constant and through

LF MK MH MK MH AG MK
KQF constant, that 16 = Mi and 16 = 11 Also, 16 =AD" 1F°

AGLEF = AHMK = SK.MK = n = m. But ¢ +e=s4+m=s+n, and
s+ n+4 8 —e=p In this equation substitute for s 4 = its equal, ¢ + ¢, and we
have ¢ + € + 8 — e= ¢ + 8 = p. Thus, the curvilinear area 8, or CEFK, is the
excess of the force exerted by the medium expanding from C to E at the higher
constant temperature, over the force exerted upon the same, compressing it from
F to K at the lower constant temperature. It is also the excess of the vis wiva
absorbed in the first part of the process over the vis viva given out in the last part.

or
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This is the interpretation of M. CLAPEYRON’S fundamental position® applied to the
hypothetical medium. M. CLAPEYRON assumes that the quantity of heat taken from
the body A (p. 349, ‘TavLor’s Memoirs’) during the expansion from C to E is
necessarily equal to the quantity given to the body B during compression from F
to K, and that from E to F and K to C no heat is taken from or given to the volume
of gas, a proportion only of the sensible heat being reduced to a latent form and
again thrown out. Thus, there appears the anomaly of the mechanical force 8 being
exerted or generated without any loss of heat. M. CLAPEYRON’S view is here so much
at variance with the vis viva theory of heat that it seemed proper to enter into a full
explanation of the same condition in the hypothetical medium. The case is very
instructive, and throws light on the wvis viwa theory, which is at the same time the
means of clearing up the anomaly in causation of mechanical force seeming to be
generated without expenditure of heat. M. CLAPEYRON’S conclusions, so far as gases
are concerned, are quite independent of any hypothesis, and seem to be strictly
deduced from the laws of MarrorTE and DaArtoN and Gay-Lussac combined with
the relation that has been found to subsist between simultaneous increments of
sensible and of Jatent heat. It is satisfactory to observe that they agree, so far as
they go, with the physical properties of the medium.

Note G.—Objection to Theory.

The only difficulty I can discover in the wis vive theory of heat applies in some
measure to the undulatory theory of light. The ethereal medium that transmits the
undulations is affected by vibrations of the elements of matter, but there is not the
least symptom of it affecting by its resistance the planetary motions, and yet theory
shows that it must permeate through the very substance and heart of all bodies with
such quick and subtle power as not in any sensible manner to be affected in its
equilibrium by any part of their motion except what is vibratory. Now, the vis viva
theory of heat shows that the greatest ordinary velocities of this vibratory motion
do not much exceed 2000 feet per second, but the velocity of the earth in its orbit
is upwards of 50 times this amount. In the first case, if a hot body were isolated
from all surrounding matter, the whole of its motion would be withdrawn from it in a
very short time by the ethereal medium. This we can affirm inductively from the
laws of the radiation of heat. In the second case not the slightest resistance is made
manifest. The ether only affects and is affected by vibratory motion. Any other
kind, however great, it neither affects nor is affected by. What are we to infer from
this incongruity ¢ If vibratory motion differed in no other point from the rectilinear
and rotatory motion of masses of matter, than in the sudden change of direction, it is
plain that if’ there was no resistance in the one case there could be no resistance in
the other, and wice versé. We are, therefore, compelled to infer that the disturbance

* Hssay on the motive power of heat, ¢ Journ. Polyt.,” translated in ¢ Tayror’s Memoirs,” vol. 1, p. 349.
H 2
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of the ethereal medium is not caused directly by the motion of material particles as
with the grosser media of gases and liquids when affected by the motion of bodies
passing through them. Something takes place in the vibratory motion of the
elements of matter that does not take place in their collective motion.

Molecular vibration consists in the struggle, as it were, between the vis insito of
molecules and the forces that bind them together. It seems, therefore, as if the
disturbance of the medium which answers to radiation of heat and light were
derived from the disturbance of the molecular forces, and that when there was no
such disturbance there was no resistance.

But the difficulty yet remains of a body moving in a material medium without
resistance. It is almost inconceivable in the present state of our knowledge of
molecular physics. If it is at all possible (for there is almost an absurdity involved
in asserting that it is possible) it can only be by means of a persistent or continuous
relation of intense mutual organized activity between the ether and the perfectly
elastic elements of matter, of which we can as yet have very little conception.

The disturbance of molecular forces that allows the medium to absorb the wis ensite
of vibrating molecules may be likened to the ascent and descent of planetary bodies
to and from the sun while revolving in elliptic orbits. There is a disturbance when
the centripetal force on a body increases or diminishes, so that if' a body revolved in a
circle there is no disturbance, no resistance, no absorption of its wis wnsite by the
active medium, and if it revolves in an eccentric ellipse there is disturbance, resistance,
and absorption. The number of luminous vibrations in a second is, by the undulatory
theory, from 458 million million to 727 million million, and the vibrations that cause
heat are probably not very different in the velocity of their succession. If a set of
molecules thus vibrating in a perfectly cold region took one second to dissipate their
molecular vis vive by radiation, this is sufficient time for so vast a multitude of
revolutions in the molecular orbits that the loss of wis wmsite in our vibration is
probably as infinitesimal as that of the planets during one revolution, and we might
conjecture that this infinitesimal ratio was a function of the ratio of the elasticity of
the ether to the molecular velocity of the vibrations, the elasticity of the ether
being apparent only as an active centripetal force. Such a retardation would
certainly follow if the velocity of the action of gravitation were not infinite, but there
still remains to be suggested the physical condition of a medium that offers no
resistance. Is such an entity possible ?

Note H.—Formula jfor Measuring Heights by the Thermometer.

The tension of the atmospheric medium varies, as we have seen, in the proportion
of the sixth power of the depth below the summit, and the elasticity of steam varies
as the sixth power of the ordinate to the line ST on the chart multiplied by the
absolute temperature or square of the corresponding abscissa (see Note B). This
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suggests a method of measuring heights by the thermometer that requires little or no
computation.

Let ST on the chart of vapours, which there represents the sixth root of the
density of steam at 212° be also taken to represent the whole height of the
atmosphere above a point where the water boils at the temperature of 212°. Then
from =, the ordinate to the steam line at 200°, draw =q parallel to QS, the line
of one atmosphere pressure, or rather, it ought to be converging to the point where
the cord QS produced meets the axis. It is evident that SQ represents very nearly
the height where water boils at 200°. Now, if such lines are drawn at each degree
between 200° and 212° they will divide Sq into parts that are sensibly equal.

The value of each of these parts depends on the value given to ST, which,
according to our theory, is in feet 318 times the absolute temperature of the air at
the station where water boils at the temperature corresponding to the square of the
abscissa of the ordinate ST.

The following is the accurate formula by the theory for any vapour of which the
constant G (see Note B) is known :—

‘ VT F 461 — G\ /7 + 461\}) _
sirs{i - (S =) (P} + s =

in which T is the temperature of the air at the lower station, ¢ = temperature at
which the liquid boils at the lower station, r = temperature at which the liquid boils
at the upper station (all expressed in degrees on Fahr, scale), G the first constant of
the vapour (see Note B), and A the difference of height between the stations in feet.
By boiling temperature is meant the temperature at which the tension of the vapour
is the same as that of the external atmosphere.

Let us apply the formula to the vapour of water, in which G is 19:4923, and let us
take an example where T is 60° ¢ == 212°, and = = 211°; the value of / is 528°6 feet.
It will be found, by taking other values for T and 7, that this elevation for 1°
difference in the boiling point increases about Zths of a foot for each degree that =
diminishes, and increases exactly 1 foot for every degree that T increases, and wice
versd.

Professor ForBES, who has discussed this subject fully in a recent paper, finds that
his observations indicate a number between 540 and 550 feet. The accordance is
thus satisfactory ; by the formula, 550 feet per 1° is the mean value for T = 75°,

= 212° 7 = 202°, which corresponds with Professor ForBES' mean ; and what it
wants of uniformity is too small to be discovered in practice.

Suppose that we wished to employ the vapour of sulphuric ether for this purpose.
It boils at 96° under a pressure of 30 in. DALTON’S observation on this ether gives a
line of vapour which has G = 16:86. Compute the above equation with this value of
G,and t = 96° 7 = 95° T = 60°. The result is 4 = 568, being y5th greater than in
the former case of steam.
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The less this ratio, the more exact, of course, is this method of estimating heights,
and it depends greatly on the value of the constant H (see Note B), for the less the
inclination of the line of vapour is to the axis the smaller is the height that
corresponds to a difference of 1° in the boiling point. For mercury this is only
248 feet, but the temperature is inconveniently high.

Pure sulphuric ether appears to be the best adapted, as its boiling temperature is
low, and the disadvantage of the great amount of the difference of elevation for 1°
might, perhaps, be compensated for, by employing a very delicate alcohol thermometer,
with the divisions of the scale large and extending only from 60° to 100°. The ether
need not have access to the air; the equilibrium of pressure may be indicated by the
rising of a thin metallic capsule air-tight and elastic.

Such an instrument would require little more than the heat of the hand to bring it
into action, and perhaps might be made sufficiently delicate to be used as a machine
for taking levels and making sections of a country.

Note K.—Central Heat,

It is not difficult to compute the temperature that the atmosphere would have if it
were supposed to be continued through a shaft to the centre of the earth. Suppose
the force of gravity to diminish with the central radius, which is the case in a
homogeneous sphere, the temperature of the air at the centre would be about 29,000°,
and the density much greater than that of any known solid.

Heat, if it is motion, cannot be propagated upwards without loss or conducted
downwards without gain, any more than can a body when projected upwards retain
its original velocity without diminution, or when projected downwards without
increase. '

The temperature in mines (according to M. CorDIER) increases in descending at the
rate of 1° to 50 or 60 feet. Is this the natural condition of vertical equilibrium of
molecular vis viva within the crust of the globe ? If such were the case some regular
difference might be found between the top and bottom temperatures in pillars or
lofty buildings if precautions could be taken to prevent horizontal conduction.

Note L.—Nebular Hypothests.

The wvis viva theory appears to harmonize well with the Nebular Hypothesis of
Larrace.  The intense activity of the molecules of the Sun’s mass may be viewed
as the result of, or to have been originally produced by, its centripetal force while
condensing. The motion generated is not lost, as it is in appearance when inelastic
bodies meet each other with equal momenta. The clashing together of the descending
elastic matter is followed by equal recoil in the opposite direction, and molecular
vis vive is generated. We see this take place on a minute scale when metals are
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hammered, or compressed, or rubbed. Friction and every other expenditure of
mechanical force gives birth to heat or molecular wvis vive, which is dissipated by
radiation and conduction, v

The observations of Sir JorN HERSCHEL and Professor ForBEs with the actinometer
(* Phil. Trans.,” 1842) have recently supplied a knowledge of the absolute value of the
solar radiation before it passes through the atmosphere. They have found it to
amount to 3884 actines, each actine being one-millionth of a metre in thickness of ice
melted per minute. This is equal to 1835 ft. of ice melted in a mean solar day.

Now, since it is known that ice requires 140° of heat to melt it, and the mechanical
value of 1° in water is equal to the weight of the water raised through 673 feet
against the force of gravity on the Earth’s surface (§ 25), we have the means of
computing exactly the absolute mechanical power of the solar radiation—the absolute
force thrown out by the Sun in a given time.

There are various ways of reckoning this and obtaining a clear conception of it
with reference to different standards. The fundamental principles are contained in
~Section 3, and an example of their application is given in detail in § 25. The results
of four computations are as follows :—

1. During one year the solar force upon a square foot at the Earth’s mean distance
from the Sun is equal to 20 tons raised 20 miles, or to about one ton raised one mile
per day, which is equivalent to 1th of a horse-power, according to engineers’ mode of
reckoning.

2. At the Sun its amount in one year is equivalent to the descent of a stratum of
the Sun’s surface (and of its mean density) 3% miles thick through its own breadth.

3. If the Sun is supposed to contract uniformly throughout its mass so that its
radius becomes 3% miles less in consequence of the general increase of density, the
force generated is sufficient to supply the solar radiation for about 9000 years.

4, If a mass equal to the Farth descended to the Sun’s surface from its mean
distance, it would acquire a velocity of 890 miles per second, and the wis viva
generated when it strikes the Sun would amount to the force thrown out by the Sun
in 45 years. ‘

The density of the Sun being little more than that of water, it is possible that the
mere gradual contraction of its bulk, or natural subsidence of the mass, may generate
sufficient force to supply the amount of radiation without any diminution of tem-
perature, and it would appear from the third computation that the decrement of the
apparent diameter of the Sun owing to such condensation may not amount to more
than 5th of a second in 9000Q years.’

Note M.— Barometric Formula,

This may include the effect of aqueous vapour by the formula in Note B. Let
T = mean dew point, ¢ = mean temperature of the air at the two stations. Find
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1 A61 — 19473616
p ____{\/T + 4&42219 736} (t + 461),

then

H = (log B — log b) .

1250801 <461 + t>
543)

2P 34
1 — 0376 <A_ 9958 + ¢

is the correct theoretical formula, in which
H = height in feet between the two stations.
B = height of barometer at lower station.
b = height, of barometer at higher station brought to the same temperature as B.

Addition to Notes B. and H. of the Paper, “ On the Physics of Certain Media,”
recently submatted to the Royal Soctety.

Received January 27, 1846.

In Note B it was shown that the formula of a vapour might be obtained from two
experiments on its tension, and in Note H, that the function which defines the law
of density in vapours is analogous to what defines the law of tension in ascending the
atmosphere, thereby enabling us to construct a rule for measuring heights by the
thermometer. It may, perhaps, be useful to add what relates to the law of the tension
of mixtures of air and vapour.

In some cases it seems impossible to clear vapours entirely of permanently elastic
matter, and it will be allowed to be very desirable, in a practical point of view, that
we should be able to deduce the necessary constants from experiments made upon
them in their usual state of commixture. It will be found, I believe, that this may be
accomplished by means of the data afforded by not less than three experiments if the
volume occupied by the gas and vapour remains constant, or if the proportionate changes
in it are capable of being accurately determined. We do not require to know anything
of the quantity of air enclosed with the vapour : this forms one of the three unknown
quantities involved in the three equations afforded by the experiments ; the other two
being the constants G and H that develop the law of density of the pure vapour.

In the accompanying chart (Plate 2), which is drawn on the same scale as the general
chart of vapours given in Note B, it may be remarked how the straight lines of vapour
are transformed into a high order of hyperbolas when any permanently elastic matter is
allowed to contribute its effect of tension. The mode of laying off the points is simply
as follows. Suppose we wish to know the effect that air of t&5ths of an inch of tension
at 51° has upon the chart line of aqueous vapour ; we have Fé¢ = F° (51 4 461) = 0°06.
From this we obtain the value of F¢ which we employ in the general equation for such

. . t — G\¢ 6 — G\8 6 , .
mixtures, viz., F 4 ¢ (% > = ¢, or «/ J O ( \ﬁﬁ_”> = V % = the ordinate
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on the chart to the abscissa 4/¢. The curve traced out by these coordinates is one leg
of' a species of hyperbola. The apex of this hyperbola has its ordinate F'F’ (see chart)
equal to the element I in the equation, and the corresponding abscissa is G, which is

V=G
TR

equal to /¢ at this point which is the zero of the vapour. It makes

and A 5: F.

As the tension of a vapour is excessively small for a considerable range of tempera-
ture above its zero point, the curve, which begins at ', does not sensibly leave the
tangent at its vertex, F'E,~——which is also parallel to the axis at the distance from it,
F,—for some distance beyond the point of contact. It then takes a sudden bend,
having the greatest curvature at the point where the tension of the vapour is nearly
one half the tension of the air, and ascends along the line of vapour converging towards
it as an asymptote. This curve answers very well to the general run of the experi-
ments on aqueous vapour at low temperatures, and those of Professor MAGNUs that
have recently appeared in the 14th number of the Scientific Memoirs’ correspond
with it almost exactly.

Are we then to infer from this coincidence that the general divergence from the
straight at low temperatures is the effect of a minute portion of air that clings to the
water, in spite of all the precautions taken to prevent it, and that it only becomes
sensible when the tension of the vapour, per se, has descended to the same attenuated
proportion ; or is the law that is represented by the general equation of Note B,
defective to this trifling extent ?

Although no attempt has yet been successful to give a physical interpretation of
the function of the temperature that represents the density of a vapour, yet it must
be considered as a circumstance favourable to the possibility of doing so on the wis
viva, theory, that it corresponds so far with several of the laws of gases or media as
like them to involve the sixth power of an element of the temperature. Thus in
XVI. (§ 22) it was shown that when a medium was compressed the vis viva increased
as the mean molecular distance diminished, or, what is the same, that the sixth power
of the molecular velocity increased in the same ratio as the density. This actually
enables the condition of a gas in respect to density and temperature, while dilating or
being compressed, to be represented on the chart of vapours, and has already been
referred to in Note B. The physical demonstration of this peculiarity of function
depends ultimately (as shown in Section IIL) on the six rectangular directions of
space. It seems highly probable, therefore, that the same primary cause shapes the
function in the case of vapours, and we may thus be led to hope that in the liquid
condition of bodies their molecules are arranged upon a plan more simple and less
interwoven with the essential nature of the molecular forces than might otherwise
have been anticipated.

In the upper curve, FCS, the ordinates represent the sixth root of the respective

MDCCCXCIL—A.,
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densities when the air and vapour are in equal proportion at the ordinary pressure of
the atmosphere. The vapour is that of the sulphuret of carbon employed by M. Marx*®
(¢ Scient. Mem., Part 14), which has 117712 as its boiling temperature. With half its
volume filled with air it assumes the ordinary pressure of the atmosphere (30 inches)
at 80°55. At this point it crosses the line of the constant pressure of one atmosphere
(see Note B) as may be seen on the accompanying chart. It may also deserve to be
remarked that the curve crosses this line in a much more sloping direction than the
straight line of the pure vapour, and that, consequently, according to what is stated
in Note H, such a mixture is so much better adapted to the measurement of heights
by the thermometer, inasmuch as 1° represents a much less difference of height in the
atmosphere when applied to mixtures of air and a vapour, than with the same vapour.
in its pure state. We may thus, perhaps, with such mixtures, be enabled to construct
an instrument for measuring heights by means of the thermometer which will have all
the advantages that are anticipated in Note H from employing the pure vapour of
a volatile liquid with a chart line of density having the smallest possible mchnatlon
to the axis. o

As an example of this let us take the mixture represented by the upper lme of
density, FCS. ’

At the temperature 80°55 and the ~mercury in the barometer standing at 30 inches,
a small quantity of air saturated with sulphuret of carbon is enclosed and at the
lower temperature, 70°, the tension of the mixture of air and vapour reduced to
2676 ; it is required from these data to determine the height corresponding to a
lowering of 1 degree in that temperature which brings the tension to an equilibrium
with the external atmosphere.

We have first to compute Gt by the formula given in Note B as follows :—

toe
v 0 »\/ " «/h
%61 -
/\/t 180 L v
in which £, = 461 + 70, ¢, = 461 4 8055, ¢, = 2676, e, = 30°00.
By this we obtain G = 8-742. It is m%kmw use of the small are, CB, as if it were.

a straight line.
We have next tc employ the value of G'r in the formula of Note H, viz.:—

refi- (49 ()} r=r

In this the absolute tempemture at the lower of two stations is denoted by T, a,nd t is.
the temperature at which the tension of the enclosed air and vapour ethblates the

atmospheric pressure at the lower station, the same at the upper station being 7.
' # [P Magnus.—R.]
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~ Suppose ‘
~ T = (461 + 60), ¢ = (461 + 80'55), and 7= (461 + 70);

the formula computed gives A = 3127, which, divided ‘by t— 7= 1055, gives
2964 feet as the value of 1°in such an instrument. This amount varies but little,
through a considerable range of temperature and pressure.
- This value may be obtained by observing the temperature at the bottom and at the
summit of a known height, and dividing the elevation in feet between the two
stations by the difference. Neither the law of the vapour nor the amount of air
enclosed with it is required.

What if we dismiss the vapour altogether and enclose dry air only ? It is evident
that the line CS will then become parallel to the axis and distant from it F, the
sixth root of F9, the density, which is constant. The element G becomes infinitely

negative, and %%—E—g =1, thus simplifying considerably the expression for A, which

is now converted into & = 8176 {1 - <;£>_} T.
Let ¢t = b5 and 7 = (b — B)° = b® — 6b°B, when B/b is a small fraction. By division
we have on this hypothesis 7/t = 1 — 6 B/b, and (r/t)* = 1 — B/b, which converts the

é;—T. To express§ in terms of ¢ and r, we have

Hence, so long as this fraction is small in comparison

equation for % into A = 3176
B,
b
to unity, we have the following simple expression for the height in terms of the indi
cations of the thermometer :—

afL =17
h._3176<t- - )

—_— ¢ —
t — 7= 608, and —é-tlz

This gives the nearly constant value, 53 feet, for each degree of Fahr. thermometer,
at moderate elevations and ordinary temperatures.

This is the lowest possible value for difference of temperature that can be obtained.
In ascending through an increment of the height of the atmosphere, we experience
one decrement of temperature, and five decrements of density, which, together, make
six decrements of tension. These six decrements of tension must be effected in the
enclosed air of the instrument before an equilibrium is established, and as the density
is a constant quantity they must be produced by means of a lowering of temperature
to the amount of six decrements. Thus, six decrements of temperature in the instru-
‘ment correspond to the same differential height as one decrement of temperature in
the atmosphere, or six degrees correspond to 3176 feet, the difference of height that
causes a difference of 1° while in its natural condition of vertical equilibrium.

It appears, therefore, that dry air is in every respect the best in theory for measui‘ing
heights with the thermometer by means of such an instrument as is referred to in
Note H. The theory upon which its theory rests has been shown to agree with

I 2

<
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M. Gav-Lussac’s observations during his balloon ascent, § 34, and also with
Professor ForBEs’s original determination of the nearly constant difference of level
in the atmosphere that corresponds with the same constant difference in the boiling
point of water.

Suppose, then, we take a small glass vessel, in which there is fixed a delicate ther-
mometric apparatus with a large scale. We heat it to about 100° and the inside
being perfectly dry we close it and make. it perfectly air-tight by means of a thin,
finely polished silver capsule. From 100° down to 60° corresponds to an altitude of
only about 2100 feet, so that for greater elevations or a greater range of the barometer
we would require to seal 1t at a higher temperature, or what amounts to the same
thing, partially exhaust the air while fixing the capsule. In afterwards employing
this instrument the polished capsule will be a concave mirror so long as the pressure
of the atmosphere exceeds the tension of the enclosed air. It will become a plane
reflector when they are in equilibrium, and convex when the tension exceeds the
atmospheric pressure.

Now, the image of an object is so different in these three kinds of reflectors, that I
conceive it will be possible to recognise the point of equilibrium with very considerable
accuracy, or, perhaps, better by means of an eye-piece adjusted to a certain angle of
reflection.

The principal difficulty in such an instrument would probably be in getting the
temperature of the air and of the thermometer to be perfectly the same at the instant
of equilibrium. M. BREQUET’S metallic spiral thermometer is, perhaps, the best
adapted, and would make the apparatus very portable. But it is the practical artist
only who can judge if such an instrument can be made effective.

Fig. 5.

The annexed sketch is another form of the apparatus, to be used with a delicate
mercurial thermometer that may show the temperature of the atmosphere at the
station. Q is an air thermometer, with a bead of mercury as index, which, before
observing with it, must be blown into the bulb by putting the finger upon the open
end, a. '

The air in Q, having now the same temperature and density as the atmosphere
outside the bead of mercury, is allowed to fall into the stem of the instrument, and
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the reading of the scale marked off. Heat is then applied to the shut glass bottle,
SS, that encloses Q, until the capsule, C, shows the equilibrium ; the air in Q, of
course, has the same temperature, and has expanded accordingly against the constant
pressure of the external atmosphere; the reading of the mercury in the scale, n, will
now show the amount of expansion, and, therefore, the ratio of the constant density
of the air enclosed in SS to the density of the atmosphere at the station. Thus, we
ascertain the absolute temperature and absolute density of the atmosphere at every
station from scales with as large a reading as we please.

To obtain the law of tension of a vapour by three experiments made upon it at
different temperatures when mixed with an unknown quantity of air, let ¢, ¢, ¢, be the
three absolute temperatures found by adding 461 to the reading of Fahr. scale, and
€ ¢, ¢, the corresponding tensions. Also, let G and H represent the two unknown
constants of the vapour, and F® the constant that represents the quantity of the
enclosed air, or number of gaseous molecules, which is the same at all temperatures,

. —_ 6
while the number of vaporous molecules <\Ztﬁ—~> changes with the temperature ¢.

These expressions mean the number of molecules in a constant volume, so that the
experiments require to be made with the enclosed volume over the liquid constant.
The general expression for the observed tension is

e=tF6+t<‘/t}’I‘G)6 B )

By eliminating F% from each of the three experiments, we have

b (V=G e (VI G VG \
F""to < H )“‘t H g H R Gl

From the first émd second of these, we have
H6<j~i—-j§>=(\/t1—-G)ﬁ—<\/t—G)6 ),
From the second and third, we have
H6<§—§§>= (V=G = (Vtg— G . . o . .. (4).

Dividing (8) by (4), we obtain a known ratio R,

o _ ¢
Y b (Wt — G)S - (Wt~ G)S
b= T Wit =y @
4 4
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From this we may eliminate G by trial and error. The shortest way of making this
computatlon is, perhaps, the following :—

Assume any value A for G, and substitute it in (5), and compute the eoneqpondmo*
value of R, which let us denote by N.  If we make the proportion, as the differential
of N is to the differential of A, so is the difference between N and R to 8, the difference
between A and G, we have

{(Wh =AY = (VI = A%} — (Wit = A — (i, — A} R
{(\/b‘ AP = (Wi = AP} N — {(Vt — A — (VT — A)}

L X =8, and A — 3= A,

Sl

which approximates nearer to (. Substituting this value in the place of A in the
above equation, we obtain the next value of 8, which call §,, and A; — §, = A,, which
approximates still nearer to G.

- 'We arrive more quickly at the exact value of G by making A ~ g 8= A, and
A — l\% 81 = A, Having thus found A, A, N, N,, N,, we may lay off A as the

ordinate to N, A; to Ny, and A, to Ny, then, drawing a curve through these points,
the ordinate to it opposite R is G, which, in this way, may be obtained very exactly.

As an example the following three observations are taken from Professor MagNuUs’s
experiments on the elastic force of steam, that have recently appeared in the
14th number of the ‘Scientific Memoirs.’

¢y = 0178 ty= 493 = (461 + 32)
e = 3793 ¢ = 58571 = (461 + 124°1)
e, = 29920 t, =673 = (461 + 212)

Computing the preceding formulee with these data, a few trials give G = 19-625.
Then, by (3) or (4), we get H = 1062, and by (2), from the first experiment at the
lowest temperature, we obtain the value of ¥ and thence FO(51 4 461) = 008, or

s75th part of an atmosphere of permanently elastic matter at 51° Fah.

The line on the chart which answers to the experiments of SourHERN and the,
French Academy has G = 19492, and H = 1083,

It is obvious that one of the experiments ought to be taken at as low a tempera-
ture as possible, and that T¢ should be computed from its data.

Vi —

H
tension for a given temperature is required ; but when the temperature that corre-
sponds to a given tension is sought, the equation does not admit of direct solution.
The following is, perhaps, the simplest method of overcoming the difficulty. It is
founded on the property of the tangent to the curve of constant pressure, alluded to
in Note B.

6
The general formula for vapour, t( > = e, is easy to compute when the
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The length of that portion of it intercepted between the point of contact and the
axis of the curve, is equal to three times the length of the abscissa.

The tension given being €, and the corresponding absolute temperature = being
required, assume any absolute temperature as near to 7 as may be guessed roughly ;

o . f— (\6
then, by the formula for the given vapour, t<‘£—ﬁ—(1> = ¢, compute e¢. The value of

7 may then be found directly, with all necessary precision, by the following equation :

AH e + 3G /0 2
T:{ E,y€+3f/t}.
V't

From this value of 7 subtract 461, and we have the temperature required on Fahr.
scale that corresponds to the elastic force e.
J. J. WATERSTON.
December 15, 1845.

ExpLANATION OF TABLE OF (GASES AND VAPOURS.
Received February 19, 1846.

Having found the following Table useful to refer to while studying the subject of
gases and vapours, I have been led to hope that it might be made available, so far as
it goes, in shortening the labour of drawing up a complete view of their physical
constants. That such a condensed view of their physical character and constitution
is a desideratum will probably be generally admitted, and principally with reference-
to theoretical chemistry does it seem to be of importance to have their molecular
characteristics placed before the eye in a clear and concise manner.

The tables of this description that are usually inserted in chemical treatises do not,
perhaps, give to the arithmetic of volumes all the clearness that it is susceptible of.
This is a consequence of employing the chemical equivalent or lowest combining
proportion as the unit, whether or not it happens to correspond with the specific
gravity of the gas, and it is generally either half this ratio or, as in the case of
sulphur, of phosphorus, and of arsenic, even a smaller fraction of it.

Thus we have H + O the symbol for water. In Dr. TurNER's ¢ Chemistry’ its
constitution is thus defined : 1, or one equivalent of hydrogen, 4 8, or one equivalént
of oxygen, = 9 the equivalent of water; and, by volume, 100 of hydrogen combines
with 50 of oxygen to form 100 of steam. If we take 16 as the equivalent of oxygen,
which corresponds with its specific gravity, then HO, expresses distinctly the consti-
tution of steam both by weight and velume. Another objectionable point may some-
times be remarked though it has now almost disappeared, the combining ratio by
volume is inserted before any determination of the fact has been made: thus
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Dr. TurnEgr defines the peroxide of hydrogen, 100 volumes, to consist of 100 oxygen
=+ 100 hydrogen, whereus, since the vapour has never been weighed, it is just as
likely to consist of 50 volumes of cach; both gases unite with others in several
instances in half volumes, so that, until the experiment has been made, all that can
be stated is that 17 by weight of the peroxide consists of 1 hydrogen 4 16 oxygen.
As soon as we have ascertained the space occupied by the 17 of the peroxide in
comparison to the 1 of the hydrogen we can state its composition by volume, but
it is surely confusing the subject of volumes altogether to infer this from the
combining weights alone.

In this Table the specific gravity of a simple gas in terms of hydrogen unity is
taken as the value of its symbol (Col. 3, Part 1), and when this is inserted in
parentheses (as from Nos. 10 to 20), it represents the value that has been assigned to
the symbolical letter of the element in the compounds that follow, and indicates that
it has not as yet been weighed in the simple vapour.

Thus the value of C is 12, of F 19, &c., throughout the Table wherever these letters
occur, and at the side these numbers are taken as unity in denoting the several
proportions with which they have been found to combine in a single volume of
compound gases and vapours, Opposite hydrogen, for example, we see numbers from
L up to 16, which informs us that from § a volume up to 16 volumes of this gas
enters into one volume of its compounds, and the same with regard to the others.
These indieate in some degree the molecular capabilities of the element. They are
ratios that have been taken from vapours that have actually been weighed as well as
analysed. A large proportion of them are of recent determination, and the original
details of the experiments by Dumas, MirscurrricH, ReeNAULT, LAURENT, and BrNgau
are to be found for the most part in the ¢ Annales de Chimie’; the reference to the
volume and page of this invaluable work is given in parentheses after the name of the
vapour, and the letter (m) is a reference to MrrscHErLicHS ¢ Chemistry, where
several specific gravities of vapour are given that are not to be found elsewhere.

In the table of binary compounds a column is occupied with the chemical
constitution of a single volume of each in terms of volumes of its elementary
components. Thus, nitric acid is represented by O, N, which means that one volume
of nitric aeid vapour is composed of 24 volumes oxygen united to one volume nitrogen,
and where a volume has not been weighed, although its constitution by weight is
known, the symbol is within parentheses, thus [ .

In the ternary and organic compounds the simple constitution of a volume is given
in the firsi place, as with the binary, and in the next column the most probable
arrangement of the constituents, when there is any ground for making a hypothesis.

Thus we have oxalic ether, No. 114, evidently composed of one volume oxalic acid
and one volume of sulphuric ether condensed into one volume. This also allows us
to infer with great probability the specific gravity of oxalic acid vapour. The next is
nitrous ether, No. 115, which is quite a similar compound in the liquid form, but it
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will be remarked that in the act of rising into vapour it is decomposed, and what is
one volume in the case of oxalic ether vapour is two volumes in the case of nitrous
ether. Several other examples of this kind will be found. I have already referred
to such facts as being favourable to the hypothesis of media which attributes a
mechanical origin to the law of volumes, and have likewise referred to the remarkable
circumstance that compounds which thus disunite in the act of vaporization neverthe-
less obey the general law of vapours (see Note B). As it seems, from the nature of
the funetion that expresses this law, that a mechanical origin may be found for it
also, the investigation of the subject might, perhaps, be made easier if the chart lines
of vapour were determined for mixtures of pure alcohol and water in all proportions,
and also for mixtures of alcohol and ether.

We should then, perhaps, discover the law of variation of the two constants G and
H of the chart line, and this might provide us with a new condition or effect of the
primary cause pointing to its origin from a new ground.

The two last columns contain the constants G and H, referred to in Note B.;
where there are three places of decimals the numbers are nearly exact, when two only
they are to be considered as approximate.

Column No. 1 contains the temperature on Fahrenheit scale at which the vapour
in contact with its generating solid or liquid equilibrates a pressure of 30 inches of
mercury.

Column No. 2 contains the specific gravity of the body in its usual liquid or solid
form.

Column No. 3 contains, as before mentioned, the specific gravity of the body in its
gaseous form in terms of hydrogen unity. It expresses the weight of a molecule of
the hypothetical medium that answers to the gas in its physical relations.

Column No. 4 contains the inverse of the specific heat of the body in its usual
liquid, solid, or gaseous form. The numbers are found by dividing the constant 3-2
by the specific heat. This constant is the product of the specific heat of air by its
specific gravity in terms of hydrogen unity, and to the same product of all gases that
conform to the law of equal volumes having the same specific heat. It is likewise
the product of the specific heat of mercury in its liquid form by the specific gravity of
its vapour (Note ). In other elementary bodies this product is a simple multiple of
the same constant. In compounds the same product is also in most cases a simple
multiple of the same constant. On the vis viva theory of heat the numbers in this
column probably show the mean weight of the component parts of the gaseous
molecule that have an independent motion when the body is in the liquid or solid
form. Thus, No. 33, arsenious acid : the specific gravity of the vapour is 200 times
that of hydrogen ; but its specific heat in the solid form is 8 times what it is in the
state of vapour, if in this form it obeyed the law of the specific heat of gases. Hence
25 is the number opposite in this column, which, since it goes 8 times in 200, shows
that the molecule consists of about 8 parts, each of which bas an independent

MDCOCOXCIT.—A. K
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motion. We see further that O;As expresses the constitution of one volume of this
acid, and referring to As, No. 7, we find that its specific heat in the solid form is
nearly 4 times greater than it ought to be in the vapour.

The probable general inference is that such molecules consist of several parts, more
or less free to move independently of each other, and that when they escape from the
bonds of liquid cohesion and become free projectiles, these parts can no longer assume
vis vwwa of their own, but are in subjection to the impressed condition of their common
centre of gravity.

The great question in this department is, Do such compound bodies which have so
great a specific heat in the solid form have it all at once reduced in so vast a
proportion when raised to vapour * This interesting point, as remarked at length in
Note B, has yet to be determined by an experiment made on the specific heat of
sulphuric ether vapour, as being the most accessible, which, if these views are correct,
ought to be only about §th of the specific heat, of the liquid.

Column No. 5 contains the quotient of the gaseous specific gravity by the specific
gravity of the liquid or solid, and represents the relative size of the molecules. The
subject of atomic volume has recently been the subject of interesting discussion by
M. Kopp (‘Ann. de Chim., vol. 75, 1840, p. 406), and, doubtless, will increase in
importance as science advances.

To these physical characteristics of gases it would be well if we could add the
temperature of liquefaction, the latent heat of liquefaction, or the measure of the
solid polar cohesion of molecules according to the vis viva theory, the differential of
expansion through a range of temperature, and the latent heat of vapours or measure
of liquid molecular cohesion.

December 24, 1845. J. J. WATERSTON.

This paper being the last in connection with the vis vive theory of gases that the
writer is likely to have an opportunity of submitting to the Society, he begs, in
taking leave of the subject, to express a hope that, although the nature of the
fundamental hypothesis is likely to be repulsive to mathematicians, they will not
reject it without a fair trial. The principle of the conservation of wis wwa involves
the indestructibility of force, and is a necessary consequence of the quality of perfect
elasticity or reaction in the ultimate elements of matter: if this last is a universal
property the first must also be of universal effect, and, as it does not admit of any
diminution of force in nature, we may question whether, in such intense chemical
action as the phenomena of combustion and explosion manifest, the sudden evolution
of force is not merely an exhibition of its transference from one form of elastic matter
to another.

Are not the properties of aeriform fluids and of the medium of light glaring proofs
of the widely spread existence of this quality of perfect elasticity, whatever may be
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its essential mode of reaction; and do not they even demand of us a ready assent to
its all-prevailing influence in the phenomena of Nature ?

Although the utmost caution in adopting any hypothesis is the proper accompani-
ment of a sober spirit of inquiry, it does not appear inconsistent with such a spirit to
advocate the trial of these principles as a foundation for mathematical research in the
several departments of molecular physics.

It is the matured conviction of the writer that upon such foundation we shall have
to build if we are destined ever to become acquainted with the secret mechanism of
Nature. Would that his fecble voice could call attention to the subject, could direct
upon it some portion of the vast mathematical talent that this country can now, more
than at any former period, boast of.

J. J. W,
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FREE AND PERFECTLY ELASTIC MOLECULES IN A STATE OF MOTION.
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78 MR. J. J. WATERSTON ON THE PHYSICS OF MEDIA COMPOSED OF

ArrenDIX T.

ExrrAct from the Proceedings of the Royal Society (vol. 5, p. 604—March 5, 1846).

On the Physics of Media that are composed of free and perfectly elastic Molecules i
o stote of Motion. By J. J. WATERSON (sic), Esq. Communicated by Coptain
Beaurorr, R.N., F.R.S.

THis memoir contains the enunciation of a new theory of heat, capable of explaining
the phenomena of its radiation and polarization, and the elasticity of various bodies,
founded on the hypothesis of a medium consisting of a vast multitude of particles of
matter endowed with perfect elasticity, and enclosed in elastic walls, but moving in
all directions within that space, with perfect freedom, and in every possible direction.
In the course of these motions, the particles must be supposed to encounter one
another in every possible manner, during an interval of time so small as to allow of
their being considered infinitesimal in respect to any sensible period ; still, however,
preserving the molecular vis viva constant and undiminished.

The author then enters into extensive analytical investigations; first, of the
conditions that determine the equilibrium of such a homogeneous medium as is
implied by the hypothesis, and of the laws of its elasticity ; secondly, of the physical
relations of media that differ from each other in the specific weight of their molecules ;
thirdly, of the phenomena that attend the condensing and dilating of media, and of
the mechanical value of their molecular wis viver ; fourthly, of the resistance of media
to a moving surface ; fifthly, of the vertical equilibrium of a medium surrounding a
planet and constituting its atmosphere; and lastly, of the velocity with which
impulses are transmitted through a medium so constituted.

In an Appendix, the author enters into a full explanation of a table of gases and
vapours, drawn up with reference to the subjects discussed in his paper.
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AppeNDIX II.

ExtrAct from the Report of the 21st Meeting of the British Association, Ipswich,
1851, (Transactions of the Sections, p. 6.)

On o General Theory of Gases. By J. J. WATERsTON, Bombay.

Tur author deduces the properties of gases, with respect to heat and elasticity, from
a peculiar form of the theory which regards heat as consisting in small but rapid
motions of the particles of matter. Ie conceives that the atoms of a gas, being
perfectly elastic, are in continual motion in all directions, being restrained within a
limited space by their collisions with each other, and with the particles of surrounding
bodies. The wis wiva of those motions in a given portion of gas constitutes the
quantity of heat contained in it.

He shows that the result of this state of motion must be to give the gas an
elasticity proportional to the mean square of the velocity of the molecular motions,
and to the total mass of the atoms contained in unity of bulk; that is to say, to the
density of the medium. This elasticity, in a given gas, is the measure of temperature.
Equilibrium of pressure and heat between two gases takes place when the number of
atoms in unity of volume is equal, and the vis viva of each atom equal. Temperature,
therefore, in all gases, is proportional to the mass of one atom multiplied by the mean
square of the velocity of the molecular motions, being measured from an absolute zero
491° below the zero of Fahrenheit’s thermometer.

If a gas be compressed, the mechanical power expended in the compression is
transferred to the molecules of the gas, increasing their vis wiva; and conversely,
when the gas expands, the mechanical power given out during the expansion is
obtained at the expense of the wvis viva of the atoms. This principle explains the
variations of temperature produced by the expansion and condensation of gases—the
laws of their specific heat under different circumstances, and of the velocity of sound
in them. The fall of temperature found on ascending in the atmosphere, if not
disturbed by radiation and other causes, would correspond with the vis viva necessary
to raise the atoms through the given height.

The author shows that the velocity with which gases diffuse themselves is propor-
tional to that possessed by their atoms according to his hypothesis.
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